3 resultados para Plant-pathogenic bacteria
em Instituto Politécnico do Porto, Portugal
Resumo:
Bacterial food poisoning is an ever-present threat that can be prevented with proper care and handling of food products. A disposable electrochemical immunosensor for the simultaneous measurements of common food pathogenic bacteria namely Escherichia coli O157:H7 (E. coli), campylobacter and salmonella were developed. The immunosensor was fabricated by immobilizing the mixture of anti-E. coli, anticampylobacter and anti-salmonella antibodies with a ratio of 1:1:1 on the surface of the multiwall carbon nanotube-polyallylamine modified screen printed electrode (MWCNT-PAH/SPE). Bacteria suspension became attached to the immobilized antibodies when the immunosensor was incubated in liquid samples. The sandwich immunoassay was performed with three antibodies conjugated with specific nanocrystal ( -E. coli-CdS, -campylobacter-PbS and -salmonella-CuS) which has releasable metal ions for electrochemical measurements. The square wave anodic stripping voltammetry (SWASV) was employed to measure released metal ions from bound antibody nanocrystal conjugates. The calibration curves for three selected bacteria were found in the range of 1 × 103 – 5 × 105 cells mL−1 with the limit of detection (LOD) 400 cells mL−1 for salmonella, 400 cells mL−1 for campylobacter and 800 cells mL−1 for E. coli. The precision and sensitivity of this method show the feasibility of multiplexed determination of bacteria in milk samples.
Resumo:
In the past few years the interest in coagulase-negative staphylococci (CoNS) has significantly increased in human medicine. CoNS are common commensal colonisers of the human skin, although now also recognised as major nosocomial pathogens. Over the last decades, several studies have been carried out in order to understand the pathogenicity mechanisms of CoNS. The well known determinants in the pathogenesis of CoNS infections are their ability to form biofilms and an exceptional resistance to several antibiotics. Nevertheless, there is a lack of studies regarding the commensal lifestyle of these microorganisms. Additionally, it is now hypothesised that commensal bacteria might be a reservoir of pathogenic determinants. Therefore, the work described throughout this thesis was aimed to perform a phenotypic and genotypic characterisation of different CoNS species isolated from healthy Portuguese individuals. A total of 61 CoNS isolates, comprising 7 different species, were obtained and characterised at the level of biofilm formation and antibiotic susceptibility profiles. According to the results, biofilm formation ability and presence of biofilm-associated genes were commonly found features, highlighting their pivotal role in the colonising lifestyle of CoNS. This study also addressed the correlation between phenotypic and genotypic characteristics of biofilm formation, corroborating and raising questions about the importance of some genes in this process. Moreover, it was observed a great proportion of isolates with decreased susceptibility and multiple resistances to some important antibiotics. A significant association between antibiotic resistance and biofilm formation was also demonstrated, and some hypotheses about the nature of such association were provided. Lastly, the expression patterns of two biofilm-associated genes at two distinct biofilm developmental stages were determined, confirming their importance in the accumulative stage of biofilm formation. Overall, the results presented in this thesis indicate that staphylococcal skin flora might be an important reservoir of potentially pathogenic bacteria and, simultaneously, bring to light new perceptions about the molecular basis of staphylococcal biofilm formation, and the nature of the association between antibiotic resistance and biofilm formation.
Resumo:
Endophyte-assisted phytoremediation has recently been suggested as a successful approach for ecological restoration of metal contaminated soils, however little information is available on the influence of endophytic bacteria on the phytoextraction capacity of metal hyperaccumulating plants in multi-metal polluted soils. The aims of our study were to isolate and characterize metal-resistant and 1-aminocyclopropane-1-carboxylate (ACC) utilizing endophytic bacteria from tissues of the newly discovered Zn/Cd hyperaccumulator Sedum plumbizincicola and to examine if these endophytic bacterial strains could improve the efficiency of phytoextraction of multi-metal contaminated soils. Among a collection of 42 metal resistant bacterial strains isolated from the tissues of S. plumbizincicola grown on Pb/Zn mine tailings, five plant growth promoting endophytic bacterial strains (PGPE) were selected due to their ability to promote plant growth and to utilize ACC as the sole nitrogen source. The five isolates were identified as Bacillus pumilus E2S2, Bacillus sp. E1S2, Bacillus sp. E4S1, Achromobacter sp. E4L5 and Stenotrophomonas sp. E1L and subsequent testing revealed that they all exhibited traits associated with plant growth promotion, such as production of indole-3-acetic acid and siderophores and solubilization of phosphorus. These five strains showed high resistance to heavy metals (Cd, Zn and Pb) and various antibiotics. Further, inoculation of these ACC utilizing strains significantly increased the concentrations of water extractable Cd and Zn in soil. Moreover, a pot experiment was conducted to elucidate the effects of inoculating metal-resistant ACC utilizing strains on the growth of S. plumbizincicola and its uptake of Cd, Zn and Pb in multi-metal contaminated soils. Out of the five strains, B. pumilus E2S2 significantly increased root (146%) and shoot (17%) length, fresh (37%) and dry biomass (32%) of S. plumbizincicola as well as plant Cd uptake (43%), whereas Bacillus sp. E1S2 significantly enhanced the accumulation of Zn (18%) in plants compared with non-inoculated controls. The inoculated strains also showed high levels of colonization in rhizosphere and plant tissues. Results demonstrate the potential to improve phytoextraction of soils contaminated with multiple heavy metals by inoculating metal hyperaccumulating plants with their own selected functional endophytic bacterial strains.