28 resultados para Plant material. eng
em Instituto Politécnico do Porto, Portugal
Resumo:
The present paper describes a procedure to isolate volatiles from rock-rose (Cistus ladanifer L.) using simultaneous distillation–extraction (SDE). High-value volatile compounds (HVVC) were selected and the influence of the extraction conditions investigated. The effect of the solvent nature and extraction time on SDE efficiency was studied. The best performance was achieved with pentane in 1 h operation. The extraction efficiencies ranged from 65% to 85% and the repeatability varied between 4% and 6% (as a CV%). The C. ladanifer SDE extracts were analysed by headspace solid phase microextraction (HS-SPME) followed by gas chromatography with flame ionization detection (GC-FID). The HS-SPME sampling conditions such as fiber coating, temperature, ionic strength and exposure time were optimized. The best results were achieved with an 85 µm polyacrylate fiber for a 60 min headspace extraction at 40ºC with 20% (w/v) of NaCl. For optimized conditions the recovery was in average higher than 90% for all compounds and the intermediate precision ranged from 4 to 9% (as CV %). The volatiles α-pinene (22.2 mg g−1 of extract), 2,2,6-trimethylcyclohexanone (6.1 mg g−1 of extract), borneol (3.0 mg g−1 of extract) and bornyl acetate (3.9 mg g−1 of extract) were identified in the SDE extracts obtained from the fresh plant material.
Resumo:
This paper starts with the analysis of the unusual inherence mechanism, from two aspects: accumulating and human error. We put forward twelve factors affected the decision of the emergency treatment plan in practice and summarized the evaluation index system combining with literature data. Then we screened out eighteen representative indicators by used the FDM expert questionnaire in the first phase. Hereafter, we calculated the weight of evaluation index and sorted them by the FAHP expert questionnaire, and came up with the frame of the evaluation rule by combined with the experience. In the end, the evaluation principles are concluded.
Resumo:
A growth trial with Senegalese Sole (Solea senegalensis Kaup, 1858) juveniles fed with diets containing increasing replacement levels of fishmeal by mixtures of plant protein sources was conducted over 12 weeks. Total fat contents of muscle, liver, viscera, skin, fins and head tissues were determined, as well as fatty acid profiles of muscle and liver (GC-FID analysis). Liver was the preferential local for fat deposition (5.5–10.8% of fat) followed by fins (3.4–6.7% fat). Increasing levels of plant protein in the diets seems to be related to increased levels of total lipids in the liver. Sole muscle is lean (2.4–4.0% fat), with total lipids being similar among treatments. Liver fatty acid profile varied significantly among treatments. Plant protein diets induced increased levels of C16:1 and C18:2 n -6 and a decrease in ARA and EPA levels. Muscle fatty acid profile also evidenced increasing levels of C18:2 n 6, while ARA and DHA remained similar among treatments. Substitution of fishmeal by plant protein is hence possible without major differences on the lipid content and fatty acid profile of the main edible portion of the fish – the muscle.
Resumo:
Different problems are daily discuss on environmental aspects such acid rain, eutrophication, global warming and an others problems. Rarely do we find some discussions about phosphorus problematic. Through the years the phosphorus as been a real problem and must be more discussed. On this thesis was done a global material flow analysis of phosphorus, based on data from the year 2004, the production of phosphate rock in that year was 18.9 million tones, almost this amount it was used as fertilizer on the soil and the plants only can uptake, on average, 20% of the input of fertilizer to grow up, the remainder is lost for the phosphorus soil. In the phosphorus soil there is equilibrium between the phosphorus available to uptake from the plants and the phosphorus associate with other compounds, this equilibrium depends of the kind of soil and is related with the soil pH. A reserve inventory was done and we have 15,000 million tones as reserve, the amount that is economical available. The reserve base is estimated in 47,000 million tones. The major reserves can be found in Morocco and Western Sahara, United Sates, China and South Africa. The reserve estimated in 2009 was 15,000 million tone of phosphate rock or 1,963 million tone of P. If every year the mined phosphate rock is around 22 Mt/yr (phosphorus production on 2008 USGS 2009), and each year the consumption of phosphorus increases because of the food demand, the reserves of phosphate rock will be finished in about 90 years, or maybe even less. About the value/impact assessment was done a qualitative analysis, if on the future we don’t have more phosphate rock to produce fertilizers, it is expected a drop on the crops yields, each depends of the kind of the soil and the impact on the humans feed and animal production will not be a relevant problem. We can recovery phosphorus from different waste streams such as ploughing crop residues back into the soil, Food processing plants and food retailers, Human and animal excreta, Meat and bone meal, Manure fibre, Sewage sludge and wastewater. Some of these examples are developed in the paper.
Resumo:
Micro-abrasion wear tests with ball-cratering configuration are widely used. Sources of variability are already studied by different authors and conditions for testing are parameterized by BS EN 1071-6: 2007 standard which refers silicon carbide as abrasive. However, the use of other abrasives is possible and allowed. In this work, ball-cratering wear tests were performed using four different abrasive particles of three dissimilar materials: diamond, alumina and silicon carbide. Tests were carried out under the same conditions on a steel plate provided with TiB2 hard coating. For each abrasive, five different test durations were used allowing understanding the initial wear phenomena. Composition and shape of abrasive particles were investigated by SEM and EDS. Scar areas were observed by optical and electronic microscopy in order to understand the wear effects caused by each of them. Scar geometry and grooves were analyzed and compared. Wear coefficient was calculated for each situation. It was observed that diamond particles produce well-defined and circular wear scars. Different silicon carbide particles presented dissimilar results as consequence of distinct particle shape and size distribution.
Resumo:
The characteristics of carbon fibre reinforced laminates have widened their use from aerospace to domestic appliances, and new possibilities for their usage emerge almost daily. In many of the possible applications, the laminates need to be drilled for assembly purposes. It is known that a drilling process that reduces the drill thrust force can decrease the risk of delamination. In this work, damage assessment methods based on data extracted from radiographic images are compared and correlated with mechanical test results—bearing test and delamination onset test—and analytical models. The results demonstrate the importance of an adequate selection of drilling tools and machining parameters to extend the life cycle of these laminates as a consequence of enhanced reliability.
Resumo:
In this study the inhalation doses and respective risk are calculated for the population living within a 20 km radius of a coal-fired power plant. The dispersion and deposition of natural radionuclides were simulated by a Gaussian dispersion model estimating the ground level activity concentration. The annual effective dose and total risk were 0.03205 mSv/y and 1.25 x 10-8, respectively. The effective dose is lower than the limit established by the ICRP and the risk is lower than the limit proposed by the U.S. EPA, which means that the considered exposure does not pose any risk for the public health.
Resumo:
Coal contains trace quantities of natural radionuclides such as Th-232, U-235, U-238, as well as their radioactive decay products and 40K. These radionuclides can be released as fly ash in atmospheric emissions from coal-fired power plants, dispersed into the environment and deposited on the surrounding top soils. Therefore, the natural radiation background level is enhanced and consequently increase the total dose for the nearby population. A radiation monitoring programme was used to assess the external dose contribution to the natural radiation background, potentially resulting from the dispersion of coal ash in past atmospheric emissions. Radiation measurements were carried out by gamma spectrometry in the vicinity of a Portuguese coal-fired power plant. The radiation monitoring was achieved both on and off site, being the boundary delimited by a 20 km circle centered in the stacks of the coal plant. The measured radionuclides concentrations for the uranium and thorium series ranged from 7.7 to 41.3 Bq/kg for Ra-226 and from 4.7 to 71.6 Bq/kg for Th-232, while K-40 concentrations ranged from 62.3 to 795.1 Bq/kg. The highest values were registered near the power plant and at distances between 6 and 20 km from the stacks, mainly in the prevailing wind direction. The absorbed dose rates were calculated for each sampling location: 13.97-84.00 ηGy/h, while measurements from previous studies carried out in 1993 registered values in the range of 16.6-77.6 ηGy/h. The highest values were registered at locations in the prevailing wind direction (NW-SE). This study has been primarily done to assess the radiation dose rates and exposure to the nearby population in the surroundings of a coal-fired power plant. The results suggest an enhancement or at least an influence in the background radiation due to the coal plant past activities.
Resumo:
Certain materials used and produced in a wide range of non-nuclear industries contain enhanced activity concentrations of natural radionuclides. In particular, electricity production from coal is one of the major sources of increased exposure to man from enhanced naturally occurring materials. Over the past decades there has been some discussion about the elevated natural background radiation in the area near coal-fired power plants due to high uranium and thorium content present in coal. This work describes the methodology developed to assess the radiological impact due to natural radiation background increasing levels, potentially originated by a coal-fired power plant’s operation. Gamma radiation measurements have been done with two different instruments: a scintillometer (SPP2 NF, Saphymo) and a gamma ray spectrometer with energy discrimination (Falcon 5000, Canberra). A total of 40 relevant sampling points were established at locations within 20 km from the power plant: 15 urban and 25 suburban measured stations. The highest values were measured at the sampling points near to the power plant and those located in the area within the 6 and 20 km from the stacks. This may be explained by the presence of a huge coal pile (1.3 million tons) located near the stacks contributing to the dispersion of unburned coal and, on the other hand, the height of the stacks (225 m) which may influence ash’s dispersion up to a distance of 20 km. In situ gamma radiation measurements with energy discrimination identified natural emitting nuclides as well as their decay products (212Pb, 214Pb, 226Ra 232Th, 228Ac, 234Th 234Pa, 235U, etc.). This work has been primarily done to in order to assess the impact of a coal-fired power plant operation on the background radiation level in the surrounding area. According to the results, an increase or at least an influence has been identified both qualitatively and quantitatively.
Resumo:
This paper aims to survey metal concentrations in soils in the vicinity of a coal-firedpower plant located in southwest of Portugal. Two annual sampling campaigns were carried out to measure a hypothetical soil contamination around the coal plant. The sampling area was divided into two subareas, both centered in the emission source, delimited by two concentric circles with radius of 6 km and 20 km. About 40 samplings points were defined in the influence area. Metals measurements were performed with a portable analytical X-ray dispersive energy fluorescence spectrometer identifying about 20 different elements in each sampling point. The most relevant elements measured included As, Cu, Fe, Hg, Pb, Ti and Zn in both sampling areas. Considering the results obtained in the first sampling campaign, arsenic is predominantly higher within the 6-20 km sampling area. The second sampling campaign showed that both sampling areas presented relatively similar metal concentrations except for Fe, Mn, Sr and Zn which concentration is higher within the 6-20 km sampling area. Also, As, Fe, Mn and Ti concentrations decreased significantly from the first to the second sampling campaign and their concentration were predominately higher in the NE-E and E-SE directions.
Resumo:
This paper describes the methodology adopted to assess local air quality impact in the vicinity of a coal power plant located in the south of Portugal. Two sampling areas were selected to assess the deposition flux of dust fallout and its potential spatial heterogeneity. The sampling area was divided into two subareas: the inner, with higher sampling density and urban and suburban characteristics, inside a 6-km circle centered on the stacks, and an outer subarea, mainly rural, with lower sampling density within a radius of 20 km. Particulate matter deposition was studied in the vicinity of the coal fired power plant during three seasonal sampling campaigns. For the first one, the average annual flux of dust fallout was 22.51 g/(m2 yr), ranging from 4.20 to 65.94 g/(m2 yr); for the second one was 9.47 g/(m2 yr), ranging from 0.78 to 32.72 g/(m2 yr) and for the last one was 38.42 g/(m2 yr), ranging from 1.41 to 117.48 g/(m2 yr). The fallout during the second campaign turned out to be much lower than for others. This was in part due to meteorological local patterns but mostly due to the fact that the power plant was not working at full power during the second sampling campaign.155
Resumo:
To date, glass fibre reinforced polymer (GFRP) waste recycling is very limited and restricted by thermoset nature of binder matrix and lack of economically viable enduse applications for the recyclates. In this study, efforts were made in order to recycle grinded GFRP waste proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, a mix of powdered and fibrous materials, were incorporated into polyester based mortars as fine aggregate and filler replacements, at different load contents (between 4% up to 12% of total mass) and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Test results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse in concrete-polymer composites.
Resumo:
Glass fibre-reinforced plastics (GFRP) have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remoulded, and complex composition of the composite itself. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, efforts were made in order to recycle grinded GFRP waste, proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, were incorporated into polyester based mortars as fine aggregate and filler replacements at different load contents and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behavior over unmodified polyester based mortars, thus indicating the feasibility of the GFRP industrial waste reuse into concrete-polymer composite materials.
Resumo:
In this study, the concentration probability distributions of 82 pharmaceutical compounds detected in the effluents of 179 European wastewater treatment plants were computed and inserted into a multimedia fate model. The comparative ecotoxicological impact of the direct emission of these compounds from wastewater treatment plants on freshwater ecosystems, based on a potentially affected fraction (PAF) of species approach, was assessed to rank compounds based on priority. As many pharmaceuticals are acids or bases, the multimedia fate model accounts for regressions to estimate pH-dependent fate parameters. An uncertainty analysis was performed by means of Monte Carlo analysis, which included the uncertainty of fate and ecotoxicity model input variables, as well as the spatial variability of landscape characteristics on the European continental scale. Several pharmaceutical compounds were identified as being of greatest concern, including 7 analgesics/anti-inflammatories, 3 β-blockers, 3 psychiatric drugs, and 1 each of 6 other therapeutic classes. The fate and impact modelling relied extensively on estimated data, given that most of these compounds have little or no experimental fate or ecotoxicity data available, as well as a limited reported occurrence in effluents. The contribution of estimated model input variables to the variance of freshwater ecotoxicity impact, as well as the lack of experimental abiotic degradation data for most compounds, helped in establishing priorities for further testing. Generally, the effluent concentration and the ecotoxicity effect factor were the model input variables with the most significant effect on the uncertainty of output results.
Resumo:
Gamma radiations measurements were carried out in the vicinity of a coal-fired power plant located in the southwest coastline of Portugal. Two different gamma detectors were used to assess the environmental radiation within a circular area of 20 km centred in the coal plant: a scintillometer (SPP2 NF, Saphymo) and a high purity germanium detector (HPGe, Canberra). Fifty urban and suburban measurements locations were established within the defined area and two measurements campaigns were carried out. The results of the total gamma radiation ranged from 20.83 to 98.33 counts per second (c.p.s.) for both measurement campaigns and outdoor doses rates ranged from 77.65 to 366.51 Gy/h. Natural emitting nuclides from the U-238 and Th-232 decay series were identified as well as the natural emitting nuclide K-40. The radionuclide concentration from the uranium and thorium series determined by gamma spectrometry ranged from 0.93 to 73.68 Bq/kg, while for K-40 the concentration ranged from 84.14 to 904.38 Bq/kg. The obtained results were used primarily to define the variability in measured environmental radiation and to determine the coal plant’s influence in the measured radiation levels. The highest values were measured at two locations near the power plant and at locations between the distance of 6 and 20 km away from the stacks, mainly in the prevailing wind direction. The results showed an increase or at least an influence from the coal-fired plant operations, both qualitatively and quantitatively.