3 resultados para Pipe
em Instituto Politécnico do Porto, Portugal
Resumo:
Este trabalho teve como propósito fazer uma avaliação do desempenho energético e da qualidade do ar no interior das instalações de uma Piscina Municipal Coberta, localizada na zona norte de Portugal, sendo estabelecidos os seguintes objetivos: caracterização geral da piscina, no que respeita aos seus diferentes espaços e equipamentos, cálculo dos consumos térmicos e elétricos bem como o registo das concentrações de elementos poluentes para controlo da qualidade do ar no interior da piscina, tendo como base a legislação atualmente em vigor. A caracterização geral da piscina permitiu verificar algumas inconformidades como a temperatura da água nos tanques de natação que tem valores superiores aos recomendados e a sala de primeiros socorros que não possui acesso direto ao exterior. Acrescente-se que o pavimento nos chuveiros da casa de banho feminina e os valores de pH para água do tanque grande e pequeno não estão sempre dentro da gama de recomendação. O caudal da renovação de ar está a ser operado manualmente e quando está a funcionar a 50% da sua capacidade máxima, que acontece numa parte do dia, apenas consegue renovar 77,5% do caudal recomendado pelo RSECE. Para se obter o valor recomendado é necessário ter pelo menos 7 horas com o caudal a 100% da capacidade máxima. A avaria na UTA2 originou que 40% dos registos diários da humidade relativa interior estivessem fora da gama de valores recomendados e que esta é fortemente dependente da humidade no exterior e pode ser agravada quando as portas dos envidraçados da nave são abertas. Analisando ainda a quantidade de água removida na desumidificação do ar com a água evaporada em condições de Outono-Inverno ou Primavera-Verão, este estudo permitiu concluir que todas as combinações demonstraram a necessidade de desumidificação salvo a combinação Outono-Inverno e UTA2 a funcionar a 100% da sua capacidade máxima. Os isolamentos das tubagens na sala das caldeiras foram observados e comparados com as soluções recomendadas pelas empresas especialistas e verificou-se que alguns estão mal colocados com parcial ou total degradação, promovendo perdas térmicas. No caso das perdas calorificas por evaporação, estas representaram cerca de 67,78% das perdas totais. Como tal, estudou-se a aplicação de uma cobertura sobre o plano de água durante o período de inatividade da piscina (8 horas) e verificou-se que o resultado seria uma poupança de 654,8 kWh/dia, na ausência de evaporação da água, mais 88,00 kWh/dia do período da UTA2 a funcionar a 50% da sua capacidade, perfazendo um total de 742,8 kWh/dia. A aplicação da cobertura permite obter um VAL de valor positivo, uma TIR de 22,77% e sendo este valor superior ao WACC (Weight Average Cost of Capital), o projeto torna-se viável com um Pay-Back de 3,17 anos. Caracterizou-se também o consumo total diário em eletricidade, e verificou-se que as unidades de climatização, as bombas de circulação de água, a iluminação, e outros equipamentos representam, respetivamente, cerca de 67,81, 25,26, 2,68 e 3,91% da energia elétrica total consumida. Por fim, a análise à qualidade do ar no interior da nave em Maio e Setembro identificou que as concentrações de ozono apresentavam valores no limite do aceitável em Maio e superiores ao valor de emissão em Setembro. Os compostos orgânicos voláteis também apresentavam valores em Maio 4,98 vezes superior e em Setembro 6,87 vezes superior aos valores máximos exigidos pelo D.L. nº 79/2006. Houve ainda altas concentrações de radão registadas na casa dos filtros, em Maio com um valor 11,49 vezes superior, no entanto esse valor desceu em Setembro para 1,08 vezes, mesmo assim superior ao exigido pelo D.L. nº 79/2006.
Resumo:
Abstract: Preferential flow and transport through macropores affect plant water use efficiency and enhance leaching of agrochemicals and the transport of colloids, thereby increasing the risk for contamination of groundwater resources. The effects of soil compaction, expressed in terms of bulk density (BD), and organic carbon (OC) content on preferential flow and transport were investigated using 150 undisturbed soil cores sampled from 15 × 15–m grids on two field sites. Both fields had loamy textures, but one site had significantly higher OC content. Leaching experiments were conducted in each core by applying a constant irrigation rate of 10 mm h−1 with a pulse application of tritium tracer. Five percent tritium mass arrival times and apparent dispersivities were derived from each of the tracer breakthrough curves and correlated with texture, OC content, and BD to assess the spatial distribution of preferential flow and transport across the investigated fields. Soils from both fields showed strong positive correlations between BD and preferential flow. Interestingly, the relationships between BD and tracer transport characteristics were markedly different for the two fields, although the relationship between BD and macroporosity was nearly identical. The difference was likely caused by the higher contents of fines and OC at one of the fields leading to stronger aggregation, smaller matrix permeability, and a more pronounced pipe-like pore system with well-aligned macropores.
Resumo:
Em 2006, a IEA (Agência Internacional de Energia), publicou alguns estudos de consumos mundiais de energia. Naquela altura, apontava na fabricação de produtos, um consumo mundial de energia elétrica, de origem fóssil de cerca 86,16 EJ/ano (86,16×018 J) e um consumo de energia nos sistemas de vapor de 32,75 EJ/ano. Evidenciou também nesses estudos que o potencial de poupança de energia nos sistemas de vapor era de 3,27 EJ/ano. Ou seja, quase tanto como a energia consumida nos sistemas de vapor da U.E. Não se encontraram números relativamente a Portugal, mas comparativamente com outros Países publicitados com alguma similaridade, o consumo de energia em vapor rondará 0,2 EJ/ano e por conseguinte um potencial de poupança de cerca 0,02 EJ/ano, ou 5,6 × 106 MWh/ano ou uma potência de 646 MW, mais do que a potência de cinco barragens Crestuma/Lever! Trata-se efetivamente de muita energia; interessa por isso perceber o onde e o porquê deste desperdício. De um modo muito modesto, pretende-se com este trabalho dar algum contributo neste sentido. Procurou-se evidenciar as possibilidades reais de os utilizadores de vapor de água na indústria reduzirem os consumos de energia associados à sua produção. Não estão em causa as diferentes formas de energia para a geração de vapor, sejam de origem fóssil ou renovável; interessou neste trabalho estudar o modo de como é manuseado o vapor na sua função de transporte de energia térmica, e de como este poderá ser melhorado na sua eficiência de cedência de calor, idealmente com menor consumo de energia. Com efeito, de que servirá se se optou por substituir o tipo de queima para uma mais sustentável se a jusante se continuarem a verificarem desperdícios, descarga exagerada nas purgas das caldeiras com perda de calor associada, emissões permanentes de vapor para a atmosfera em tanques de condensado, perdas por válvulas nos vedantes, purgadores avariados abertos, pressão de vapor exageradamente alta atendendo às temperaturas necessárias, “layouts” do sistema de distribuição mal desenhados, inexistência de registos de produção e consumos de vapor, etc. A base de organização deste estudo foi o ciclo de vapor: produção, distribuição, consumo e recuperação de condensado. Pareceu importante incluir também o tratamento de água, atendendo às implicações na transferência de calor das superfícies com incrustações. Na produção de vapor, verifica-se que os maiores problemas de perda de energia têm a ver com a falta de controlo, no excesso de ar e purgas das caldeiras em exagero. Na distribuição de vapor aborda-se o dimensionamento das tubagens, necessidade de purgas a v montante das válvulas de controlo, a redução de pressão com válvulas redutoras tradicionais; será de destacar a experiência americana no uso de micro turbinas para a redução de pressão com produção simultânea de eletricidade. Em Portugal não se conhecem instalações com esta opção. Fabricantes da República Checa e Áustria, têm tido sucesso em algumas dezenas de instalações de redução de pressão em diversos países europeus (UK, Alemanha, R. Checa, França, etc.). Para determinação de consumos de vapor, para projeto ou mesmo para estimativa em máquinas existentes, disponibiliza-se uma série de equações para os casos mais comuns. Dá-se especial relevo ao problema que se verifica numa grande percentagem de permutadores de calor, que é a estagnação de condensado - “stalled conditions”. Tenta-se também evidenciar as vantagens da recuperação de vapor de flash (infelizmente de pouca tradição em Portugal), e a aplicação de termocompressores. Finalmente aborda-se o benchmarking e monitorização, quer dos custos de vapor quer dos consumos específicos dos produtos. Esta abordagem é algo ligeira, por manifesta falta de estudos publicados. Como trabalhos práticos, foram efetuados levantamentos a instalações de vapor em diversos sectores de atividades; 1. ISEP - Laboratório de Química. Porto, 2. Prio Energy - Fábrica de Biocombustíveis. Porto de Aveiro. 3. Inapal Plásticos. Componentes de Automóvel. Leça do Balio, 4. Malhas Sonix. Tinturaria Têxtil. Barcelos, 5. Uma instalação de cartão canelado e uma instalação de alimentos derivados de soja. Também se inclui um estudo comparativo de custos de vapor usado nos hospitais: quando produzido por geradores de vapor com queima de combustível e quando é produzido por pequenos geradores elétricos. Os resultados estão resumidos em tabelas e conclui-se que se o potencial de poupança se aproxima do referido no início deste trabalho.