4 resultados para Perception and environmental explanation
em Instituto Politécnico do Porto, Portugal
Resumo:
Air pollution represents a serious risk not only to environment and human health, but also to historical heritage. In this study, air pollution of the Oporto Metropolitan Area and its main impacts were characterized. The results showed that levels of CO, PM10 and SO2 have been continuously decreasing in the respective metropolitan area while levels of NOx and NO2 have not changed significantly. Traffic emissions were the main source of the determined polycyclic aromatic hydrocarbons (PAHs; 16 PAHs considered by U.S. EPA as priority pollutants, dibenzo[a,l]pyrene and benzo[j]fluoranthene) in air of the respective metropolitan area. The mean concentration of 18 PAHs in air was 69.9±39.7 ng m−3 with 3–4 rings PAHs accounting for 75% of the total ΣPAHs. The health risk analysis of PAHs in air showed that the estimated values of lifetime lung cancer risks considerably exceeded the health-based guideline level. Analytical results also confirm that historical monuments in urban areas act as passive repositories for air pollutants present in the surrounding atmosphere. FTIR and EDX analyses showed that gypsum was the most important constituent of black crusts of the characterized historical monument Monastery of Serra do Pilar classified as “UNESCO World Cultural Heritage”. In black crusts, 4–6 rings compounds accounted approximately for 85% of ΣPAHs. The diagnostic ratios confirmed that traffic emissions were the major source of PAHs in black crusts; PAH composition profiles were very similar for crusts and PM10 and PM2.5.
Resumo:
The recent changes on power systems paradigm requires the active participation of small and medium players in energy management. With an electricity price fluctuation these players must manage the consumption. Lowering costs and ensuring adequate user comfort levels. Demand response can improve the power system management and bring benefits for the small and medium players. The work presented in this paper, which is developed aiming the smart grid context, can also be used in the current power system paradigm. The proposed system is the combination of several fields of research, namely multi-agent systems and artificial neural networks. This system is physically implemented in our laboratories and it is used daily by researchers. The physical implementation gives the system an improvement in the proof of concept, distancing itself from the conventional systems. This paper presents a case study illustrating the simulation of real-time pricing in a laboratory.
Resumo:
The occurrence of seven pharmaceuticals and two metabolites belonging to non-steroidal anti-inflammatory drugs and analgesics therapeutic classes was studied in seawaters. A total of 101 samples covering fourteen beaches and five cities were evaluated in order to assess the spatial distribution of pharmaceuticals among north Portuguese coast. Seawaters were selected in order to embrace different bathing water quality (excellent, good and sufficient). Acetaminophen, ketoprofen and the metabolite hydroxyibuprofen were detected in all the seawater samples at maximum concentrations of 584, 89.7 and 287 ng L− 1, respectively. Carboxyibuprofen had the highest seawater concentration (1227 ng L− 1). The temporal distribution of the selected pharmaceuticals during the bathing season showed that, in general, higher concentrations were detected in August and September. The environmental risk posed by the pharmaceuticals detected in seawaters towards different trophic levels (fish, daphnids and algae) was also assessed. Only diclofenac showed hazard quotients above one for fish, representing a potential risk for aquatic organisms. These results were observed in seawaters classified as excellent bathing water. Additional data is needed in order to support the identification and prioritization of risks posed by pharmaceuticals in marine environment.
Resumo:
The use of buffers to maintain the pH within a desired range is a very common practice in chemical, biochemical and biological studies. Among them, zwitterionic N-substituted aminosulfonic acids, usually known as Good’s buffers, although widely used, can complex metals and interact with biological systems. The present work reviews, discusses and updates the metal complexation characteristics of thirty one commercially available buffers. In addition, their impact on biological systems is also presented. The influences of these buffers on the results obtained in biological, biochemical and environmental studies, with special focus on their interaction with metal ions, are highlighted and critically reviewed. Using chemical speciation simulations, based on the current knowledge of the metal–buffer stability constants, a proposal of the most adequate buffer to employ for a given metal ion is presented.