3 resultados para Passion fruit pulp
em Instituto Politécnico do Porto, Portugal
Resumo:
In the last decades nanotechnology has become increasingly important because it offers indisputable advantages to almost every area of expertise, including environmental remediation. In this area the synthesis of highly reactive nanomaterials (e.g. zero-valent iron nanoparticles, nZVI) is gaining the attention of the scientific community, service providers and other stakeholders. The synthesis of nZVI by the recently developed green bottom-up method is extremely promising. However, the lack of information about the characteristics of the synthetized particles hinders a wider and more extensive application. This work aims to evaluate the characteristics of nZVI synthesized through the green method using leaves from different trees. Considering the requirements of a product for environmental remediation the following characteristics were studied: size, shape, reactivity and agglomeration tendency. The mulberry and pomegranate leaf extracts produced the smallest nZVIs (5–10 nm), the peach, pear and vine leaf extracts produced the most reactive nZVIs while the ones produced with passion fruit, medlar and cherry extracts did not settle at high nZVI concentrations (931 and 266 ppm). Considering all tests, the nZVIs obtained from medlar and vine leaf extracts are the ones that could present better performances in the environmental remediation. The information gathered in this paper will be useful to choose the most appropriate leaf extracts and operational conditions for the application of the green nZVIs in environmental remediation.
Resumo:
In order to combat a variety of pests, pesticides are widely used in fruits. Several extraction procedures (liquid extraction, single drop microextraction, microwave-assisted extraction, pressurized liquid extraction, supercritical fluid extraction, solid-phase extraction, solid-phase microextraction, matrix solid-phase dispersion, and stir bar sorptive extraction) have been reported to determine pesticide residues in fruits and fruit juices. The significant change in recent years is the introduction of the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) methods in these matrices analysis. A combination of techniques reported the use of new extraction methods and chromatography to provide better quantitative recoveries at low levels. The use of mass spectrometric detectors in combination with liquid and gas chromatography has played a vital role to solve many problems related to food safety. The main attention in this review is on the achievements that have been possible because of the progress in extraction methods and the latest advances and novelties in mass spectrometry, and how these progresses have influenced the best control of food, allowing for an increase in the food safety and quality standards.
Resumo:
Eight tropical fruit pulps from Brazil were simultaneously characterised in terms of their antioxidant and antimicrobial properties. Antioxidant activity was screened by DPPH radical scavenging activity (126–3987 mg TE/100 g DW) and ferric reduction activity power (368–20819 mg AAE/100 g DW), and complemented with total phenolic content (329–12466 mg GAE/100 g DW) and total flavonoid content measurements (46–672 mg EE /100 g DW), whereas antimicrobial activity was tested against the most frequently found food pathogens. Acerola and açaí presented the highest values for the antioxidant-related measurements. Direct correlations between these measurements could be observed for some of the fruits. Tamarind exhibited the broadest antimicrobial potential, having revealed growth inhibition of Pseudomonas aeruginosa. Escherichia coli, Listeria monocytogenes, Salmonella sp. and Staphylococcus aureus. Açaí and tamarind extracts presented an inverse relationship between antibacterial and antioxidant activities, and therefore, the antibacterial activity cannot be attributed (only) to phenolic compounds.