119 resultados para Packing for shipment -- Automation
em Instituto Politécnico do Porto, Portugal
Integration of an automatic storage and retrieval system (ASRS) in a discrete-part automation system
Resumo:
This technical report describes the work carried out in a project within the ERASMUS programme. The objective of this project was the Integration of an Automatic Warehouse in a Discrete-Part Automation System. The discrete-part automation system located at the LASCRI (Critical Systems) laboratory at ISEP was extended with automatic storage and retrieval of the manufacturing parts, through the integration of an automatic warehouse and an automatic guided vehicle (AGV).
Resumo:
The container loading problem (CLP) is a combinatorial optimization problem for the spatial arrangement of cargo inside containers so as to maximize the usage of space. The algorithms for this problem are of limited practical applicability if real-world constraints are not considered, one of the most important of which is deemed to be stability. This paper addresses static stability, as opposed to dynamic stability, looking at the stability of the cargo during container loading. This paper proposes two algorithms. The first is a static stability algorithm based on static mechanical equilibrium conditions that can be used as a stability evaluation function embedded in CLP algorithms (e.g. constructive heuristics, metaheuristics). The second proposed algorithm is a physical packing sequence algorithm that, given a container loading arrangement, generates the actual sequence by which each box is placed inside the container, considering static stability and loading operation efficiency constraints.
Resumo:
A definition of medium voltage (MV) load diagrams was made, based on the data base knowledge discovery process. Clustering techniques were used as support for the agents of the electric power retail markets to obtain specific knowledge of their customers’ consumption habits. Each customer class resulting from the clustering operation is represented by its load diagram. The Two-step clustering algorithm and the WEACS approach based on evidence accumulation (EAC) were applied to an electricity consumption data from a utility client’s database in order to form the customer’s classes and to find a set of representative consumption patterns. The WEACS approach is a clustering ensemble combination approach that uses subsampling and that weights differently the partitions in the co-association matrix. As a complementary step to the WEACS approach, all the final data partitions produced by the different variations of the method are combined and the Ward Link algorithm is used to obtain the final data partition. Experiment results showed that WEACS approach led to better accuracy than many other clustering approaches. In this paper the WEACS approach separates better the customer’s population than Two-step clustering algorithm.
Resumo:
Scheduling is a critical function that is present throughout many industries and applications. A great need exists for developing scheduling approaches that can be applied to a number of different scheduling problems with significant impact on performance of business organizations. A challenge is emerging in the design of scheduling support systems for manufacturing environments where dynamic adaptation and optimization become increasingly important. In this paper, we describe a Self-Optimizing Mechanism for Scheduling System through Nature Inspired Optimization Techniques (NIT).
Resumo:
This chapter addresses the resolution of dynamic scheduling by means of meta-heuristic and multi-agent systems. Scheduling is an important aspect of automation in manufacturing systems. Several contributions have been proposed, but the problem is far from being solved satisfactorily, especially if scheduling concerns real world applications. The proposed multi-agent scheduling system assumes the existence of several resource agents (which are decision-making entities based on meta-heuristics) distributed inside the manufacturing system that interact with other agents in order to obtain optimal or near-optimal global performances.
Resumo:
In this paper we present VERITAS, a tool that focus time maintenance, that is one of the most important processes in the engineering of the time during the development of KBS. The verification and validation (V&V) process is part of a wider process denominated knowledge maintenance, in which an enterprise systematically gathers, organizes, shares, and analyzes knowledge to accomplish its goals and mission. The V&V process states if the software requirements specifications have been correctly and completely fulfilled. The methodologies proposed in software engineering have showed to be inadequate for Knowledge Based Systems (KBS) validation and verification, since KBS present some particular characteristics. VERITAS is an automatic tool developed for KBS verification which is able to detect a large number of knowledge anomalies. It addresses many relevant aspects considered in real applications, like the usage of rule triggering selection mechanisms and temporal reasoning.
Resumo:
Power system planning, control and operation require an adequate use of existing resources as to increase system efficiency. The use of optimal solutions in power systems allows huge savings stressing the need of adequate optimization and control methods. These must be able to solve the envisaged optimization problems in time scales compatible with operational requirements. Power systems are complex, uncertain and changing environments that make the use of traditional optimization methodologies impracticable in most real situations. Computational intelligence methods present good characteristics to address this kind of problems and have already proved to be efficient for very diverse power system optimization problems. Evolutionary computation, fuzzy systems, swarm intelligence, artificial immune systems, neural networks, and hybrid approaches are presently seen as the most adequate methodologies to address several planning, control and operation problems in power systems. Future power systems, with intensive use of distributed generation and electricity market liberalization increase power systems complexity and bring huge challenges to the forefront of the power industry. Decentralized intelligence and decision making requires more effective optimization and control techniques techniques so that the involved players can make the most adequate use of existing resources in the new context. The application of computational intelligence methods to deal with several problems of future power systems is presented in this chapter. Four different applications are presented to illustrate the promises of computational intelligence, and illustrate their potentials.
Resumo:
In the context of electricity markets, transmission pricing is an important tool to achieve an efficient operation of the electricity system. The electricity market is influenced by several factors; however the transmission network management is one of the most important aspects, because the network is a natural monopoly. The transmission tariffs can help to regulate the market, for this reason transmission tariffs must follow strict criteria. This paper presents the following methods to tariff the use of transmission networks by electricity market players: Post-Stamp Method; MW-Mile Method Distribution Factors Methods; Tracing Methodology; Bialek’s Tracing Method and Locational Marginal Price. A nine bus transmission network is used to illustrate the application of the tariff methods.
Resumo:
This paper introduces the PCMAT platform project and, in particular, one of its components, the PCMAT Metadata Authoring Tool. This is an educational web application that allows the project metadata creators to write the metadata associated to each learning object without any concern for the metadata schema semantics. Furthermore it permits the project managers to add or delete elements to the schema, without having to rewrite or compile any code.
Resumo:
This paper presents the proposal of an architecture for developing systems that interact with Ambient Intelligence (AmI) environments. This architecture has been proposed as a consequence of a methodology for the inclusion of Artificial Intelligence in AmI environments (ISyRAmI - Intelligent Systems Research for Ambient Intelligence). The ISyRAmI architecture considers several modules. The first is related with the acquisition of data, information and even knowledge. This data/information knowledge deals with our AmI environment and can be acquired in different ways (from raw sensors, from the web, from experts). The second module is related with the storage, conversion, and handling of the data/information knowledge. It is understood that incorrectness, incompleteness, and uncertainty are present in the data/information/knowledge. The third module is related with the intelligent operation on the data/information/knowledge of our AmI environment. Here we include knowledge discovery systems, expert systems, planning, multi-agent systems, simulation, optimization, etc. The last module is related with the actuation in the AmI environment, by means of automation, robots, intelligent agents and users.
Resumo:
Cloud computing is increasingly being adopted in different scenarios, like social networking, business applications, scientific experiments, etc. Relying in virtualization technology, the construction of these computing environments targets improvements in the infrastructure, such as power-efficiency and fulfillment of users’ SLA specifications. The methodology usually applied is packing all the virtual machines on the proper physical servers. However, failure occurrences in these networked computing systems can induce substantial negative impact on system performance, deviating the system from ours initial objectives. In this work, we propose adapted algorithms to dynamically map virtual machines to physical hosts, in order to improve cloud infrastructure power-efficiency, with low impact on users’ required performance. Our decision making algorithms leverage proactive fault-tolerance techniques to deal with systems failures, allied with virtual machine technology to share nodes resources in an accurately and controlled manner. The results indicate that our algorithms perform better targeting power-efficiency and SLA fulfillment, in face of cloud infrastructure failures.
Resumo:
Mestrado em Engenharia Química
Resumo:
Projecto apresentado ao Instituto Politécnico do Porto para obtenção do Grau de Mestre em Logística Orientada por Prof. Doutor Gouveia
Resumo:
Actualmente, os sistemas embebidos estão presentes em toda a parte. Embora grande parte da população que os utiliza não tenha a noção da sua presença, na realidade, se repentinamente estes sistemas deixassem de existir, a sociedade iria sentir a sua falta. A sua utilização massiva deve-se ao facto de estarem practicamente incorporados em quase os todos dispositivos electrónicos de consumo, telecomunicações, automação industrial e automóvel. Influenciada por este crescimento, a comunidade científica foi confrontada com novos problemas distribuídos por vários domínios científicos, dos quais são destacados a gestão da qualidade de serviço e gestão de recursos - domínio encarregue de resolver problemas relacionados com a alocação óptima de recursos físicos, tais como rede, memória e CPU. Existe na literatura um vasto conjunto de modelos que propõem soluções para vários problemas apresentados no contexto destes domínios científicos. No entanto, não é possível encontrar modelos que lidem com a gestão de recursos em ambientes de execução cooperativos e abertos com restrições temporais utilizando coligações entre diferentes nós, de forma a satisfazer os requisitos não funcionais das aplicações. Devido ao facto de estes sistemas serem dinâmicos por natureza, apresentam a característica de não ser possível conhecer, a priori, a quantidade de recursos necessários que uma aplicação irá requerer do sistema no qual irá ser executada. Este conhecimento só é adquirido aquando da execução da aplicação. De modo a garantir uma gestão eficiente dos recursos disponíveis, em sistemas que apresentam um grande dinamismo na execução de tarefas com e sem restrições temporais, é necessário garantir dois aspectos fundamentais. O primeiro está relacionado com a obtenção de garantias na execução de tarefas de tempo-real. Estas devem sempre ser executadas dentro da janela temporal requirida. O segundo aspecto refere a necessidade de garantir que todos os recursos necessários à execução das tarefas são fornecidos, com o objectivo de manter os níveis de performance quer das aplicações, quer do próprio sistema. Tendo em conta os dois aspectos acima mencionados, o projecto CooperatES foi especificado com o objectivo de permitir a dispositivos com poucos recursos uma execução colectiva de serviços com os seus vizinhos, de modo a cumprir com as complexas restrições de qualidade de serviço impostas pelos utilizadores ou pelas aplicações. Decorrendo no contexto do projecto CooperatES, o trabalho resultante desta tese tem como principal objectivo avaliar a practicabilidade dos conceitos principais propostos no âmbito do projecto. O trabalho em causa implicou a escolha e análise de uma plataforma, a análise de requisitos, a implementação e avaliação de uma framework que permite a execução cooperativa de aplicações e serviços que apresentem requisitos de qualidade de serviço. Do trabalho desenvolvido resultaram as seguintes contribuições: Análise das plataformas de código aberto que possam ser utilizadas na implementação dos conceitos relacionados com o projecto CooperatES; Critérios que influenciaram a escolha da plataforma Android e um estudo focado na análise da plataforma sob uma perspectiva de sistemas de tempo-real; Experiências na implementação dos conceitos do projecto na plataforma Android; Avaliação da practicabilidade dos conceitos propostos no projecto CooperatES; Proposta de extensões que permitam incorporar características de sistemas de tempo real abertos na plataforma Android.
Resumo:
Actualmente a área da domótica (automação de casas e edifícios) encontra-se em franca expansão, com principal relevância nos países mais desenvolvidos, com um crescimento de mercado de mais de 10% ao ano. Existem inúmeras razoes para a crescente implantação da domótica em edifícios, entre as quais a maior eficiência energética, o aumento da segurança e a redução do custo de aquisição das tecnologias. No que diz respeito as habitações particulares, acrescenta-se essencialmente o aumento do conforto devido ao grau de automação trazido pela domótica. Apesar da domótica não ser uma área cientifico-tecnológica recente, a rápida evolução das tecnologias associadas, nomeadamente a nível das redes de comunicação com e sem fios, foi uma das razoes fundamentais para a elaboração desta Tese. Acresce o facto de o candidato estar actualmente envolvido profissionalmente na área, pelo qual esta Tese assume uma particular importância. Realizou-se um estudo comparativo das tecnologias de domótica mais relevantes, escolhidas quer pelas suas características técnicas quer pela sua implantação de mercado e potencial futuro - KNX/EIB, LonWorks, HomePlug, ZigBee e Z-Wave. Destas, comprovou-se que as duas primeiras são aquelas que, actualmente, tem maior adequabilidade para serem aplicadas em projectos de domótica. Foi por isso efectuado um estudo mais elaborado das tecnologias LonWorks e KNX/EIB, incluindo a forma pratica de instalação/programação, a elaboração de dois demonstradores e de dois projectos (de acordo com um caderno de encargos real), usando as duas tecnologias. Concluiu-se que a tecnologia LonWorks apresenta vantagens no que respeita a escalabilidade (dimensão) dos sistemas. Em termos futuros, prevê-se a necessidade da interoperabilidade entre os nos/redes cablados (tradicionais) com nos/redes sem fio, seguindo a tendência para os ambientes inteligentes (“ambient intelligence/assisted living”, “smart spaces”, “ubiquitous computing).