12 resultados para PROPER EQUATION OF MOTION
em Instituto Politécnico do Porto, Portugal
Resumo:
Introduction Myocardial Perfusion Imaging (MPI) is a very important tool in the assessment of Coronary Artery Disease ( CAD ) patient s and worldwide data demonstrate an increasingly wider use and clinical acceptance. Nevertheless, it is a complex process and it is quite vulnerable concerning the amount and type of possible artefacts, some of them affecting seriously the overall quality and the clinical utility of the obtained data. One of the most in convenient artefacts , but relatively frequent ( 20% of the cases ) , is relate d with patient motion during image acquisition . Mostly, in those situations, specific data is evaluated and a decisi on is made between A) accept the results as they are , consider ing that t he “noise” so introduced does not affect too seriously the final clinical information, or B) to repeat the acquisition process . Another possib ility could be to use the “ Motion Correcti on Software” provided within the software package included in any actual gamma camera. The aim of this study is to compare the quality of the final images , obtained after the application of motion correction software and after the repetition of image acqui sition. Material and Methods Thirty cases of MPI affected by Motion Artefacts and repeated , were used. A group of three, independent (blinded for the differences of origin) expert Nuclear Medicine Clinicians had been invited to evaluate the 30 sets of thre e images - one set for each patient - being ( A) original image , motion uncorrected , (B) original image, motion corrected, and (C) second acquisition image, without motion . The results so obtained were statistically analysed . Results and Conclusion Results obtained demonstrate that the use of the Motion Correction Software is useful essentiall y if the amplitude of movement is not too important (with this specific quantification found hard to define precisely , due to discrepancies between clinicians and other factors , namely between one to another brand); when that is not the case and the amplitude of movement is too important , the n the percentage of agreement between clinicians is much higher and the repetition of the examination is unanimously considered ind ispensable.
Resumo:
Objective: The purpose of this study was to investigate effects of different manual techniques on cervical ranges of 17 motion and pressure pain sensitivity in subjects with latent trigger point of the upper trapezius muscle. 18 Methods: One hundred seventeen volunteers, with a unilateral latent trigger point on upper trapezius due to computer 19 work, were randomly divided into 5 groups: ischemic compression (IC) group (n = 24); passive stretching group (n = 20 23); muscle energy technique group (n = 23); and 2 control groups, wait-and-see group (n = 25) and placebo group 21 (n = 22). Cervical spine range of movement was measured using a cervical range of motion instrument as well as 22 pressure pain sensitivity by means of an algometer and a visual analog scale. Outcomes were assessed pretreatment, 23 immediately, and 24 hours after the intervention and 1 week later by a blind researcher. A 4 × 5 mixed repeated- 24 measures analysis of variance was used to examine the effects of the intervention and Cohen d coefficient was used. 25 Results: A group-by-time interaction was detected in all variables (P b .01), except contralateral rotation. The 26 immediate effect sizes of the contralateral flexion, ipsilateral rotation, and pressure pain threshold were large for 3 27 experimental groups. Nevertheless, after 24 hours and 1 week, only IC group maintained the effect size. 28 Conclusions: Manual techniques on upper trapezius with latent trigger point seemed to improve the cervical range of 29 motion and the pressure pain sensitivity. These effects persist after 1 week in the IC group. (J Manipulative Physiol 301 Ther 2013;xx:1-10)
Resumo:
Objectivos: Avaliar a força muscular bilateralmente ao nível dos músculos quadricípite e isquiotibiais em atletas da equipa nacional Portuguesa de Taekwondo. Amostra: Foi constituída por 6 dos 10 elementos que constituem a população de Taekwondistas do sexo masculino inscritos na Federação Portuguesa de Taekwondo, com presença regular nas selecções nacionais todos com um mínimo de 6 anos de prática. Os atletas apresentaram uma idade média 17,5 (+ 1,9) anos, com uma altura de 181,2 (+ 2,8) cm e com uma massa corporal total de 74,1 (+ 11,6) kg Metodologia: Procedeu-se à avaliação da força muscular dos participantes ao nível da musculatura flexora e extensora do joelho, no dinamómetro Biodex System 4, a uma velocidade de execução de 60º/s (4 repetições) e de 180º/s (10 repetições) com 60 segundos de intervalo, numa amplitude de movimento compreendida entre os 90 e os 0 graus. Todos os dados foram tratados no programa SPSS, versão 18.0, com um nível de significância de 0,05. Resultados: Verificou-se a existência de diferenças estatísticas significativas na análise do Peak Torque (p=0,023) aos 180º/seg para os flexores do joelho e do Peak Torque 30º (p=0,023) aos 180º/seg na acção dos extensores e flexores (p=0,037) do joelho, entre o membro dominante e não dominante. Constatou-se ainda a existência de um rácio Isquiotibiais/Quadricípite (55%) dentro dos valores normais do equilíbrio muscular do joelho. Discussão/Conclusão: Concluiu-se que foram encontradas diferenças nos níveis de força obtidos entre o membro dominante e não dominante, no entanto não foram encontrados desequilíbrios musculares clinicamente significativos. Assim como na relação Isquiotibiais/Quadricípite do próprio membro, não apontando por isso risco de lesão articular do joelho.
Resumo:
Este trabalho é realizado no domínio das obras de engenharia, área onde o desmonte de rocha com recurso a explosivos em obras rodoviárias é uma actividade específica e consistiu no acompanhamento e execução de três obras rodoviárias de média e grande dimensão. A necessidade de executar escavações, recorrendo a técnicas de desmonte cuidadoso de contorno, onde o plano de corte do talude final deve obedecer a requisitos de localização, alinhamento, inclinação, estabilidade e também estéticos, acrescendo a isto a necessidade de optimizar os meios envolvidos, obriga a que esta actividade seja encarada de uma forma sistematizada, visando o racional aproveitamento de recursos. A execução desta actividade requer conhecimentos no domínio das técnicas de desmonte de contorno, dos explosivos, do mecanismo de rotura de rochas, da operação de perfuração e da geomecânica dos maciços. A abordagem deste trabalho incide sobre a técnica denominada de pré‐corte e tem como objectivo encontrar uma equação característica que permita relacionar diferentes parâmetros envolvidos nesta actividade. Este objectivo é alcançado recorrendo à correlação entre equações relativas à pressão de detonação, à pressão no furo e ao espaçamento entre furos consecutivos, desenvolvidas por outros autores. Desta forma obteve‐se uma equação que relaciona parâmetros relativos ao maciço rochoso (resistência à tracção), ao explosivo (velocidade de detonação e densidade) e ao diagrama de fogo (concentração de carga – volume de explosivo e comprimento do furo – volume do furo). A comparação entre os valores destes parâmetros obtidos na produção e os obtidos com recurso à equação característica permite concluir que a sua aplicação para execução de futuras obras possibilita uma optimização dos meios envolvidos.
Resumo:
Transdermal biotechnologies are an ever increasing field of interest, due to the medical and pharmaceutical applications that they underlie. There are several mathematical models at use that permit a more inclusive vision of pure experimental data and even allow practical extrapolation for new dermal diffusion methodologies. However, they grasp a complex variety of theories and assumptions that allocate their use for specific situations. Models based on Fick's First Law found better use in contexts where scaled particle theory Models would be extensive in time-span but the reciprocal is also true, as context of transdermal diffusion of particular active compounds changes. This article reviews extensively the various theoretical methodologies for studying dermic diffusion in the rate limiting dermic barrier, the stratum corneum, and systematizes its characteristics, their proper context of application, advantages and limitations, as well as future perspectives.
Resumo:
The characteristics of carbon fiber-reinforced plastics allow a very broad range of uses. Drilling is often necessary to assemble different components, but this can lead to various forms of damage, such as delamination which is the most severe. However, a reduced thrust force can decrease the risk of delamination. In this work, two variables of the drilling process were compared: tool material and geometry, as well as the effect of feed rate and cutting speed. The parameters that were analyzed include: thrust force, delamination extension and mechanical strength through open-hole tensile test, bearing test, and flexural test on drilled plates. The present work shows that a proper combination of all the factors involved in drilling operations, like tool material, tool geometry and cutting parameters, such as feed rate or cutting speed, can lead to the reduction of delamination damage and, consequently, to the enhancement of the mechanical properties of laminated parts in complex structures, evaluated by open-hole, bearing, or flexural tests.
Resumo:
Interest in polyethylene and polypropylene bonding has increased in the last years. However, adhesive joints with adherends which are of low surface energy and which are chemically inert present several difficulties. Generally, their high degree of chemical resistance to solvents and dissimilar solubility parameters limit the usefulness of solvent bonding as a viable assembly technique. One successful approach to adhesive bonding of these materials involves proper selection of surface pre-treatment prior to bonding. With the correct pre-treatment it is possible to glue these materials with one or more of several adhesives required by the applications involved. A second approach is the use of adhesives without surface pre-treatment, such as hot melts, high tack pressure-sensitive adhesives, solvent-based specialty adhesives and, more recently, structural acrylic adhesives as such 3M DP-8005® and Loctite 3030®. In this paper, the shear strengths of two acrylic adhesives were evaluated using the lap shear test method ASTM D3163 and the block shear test method ASTM D4501. Two different industrial polyolefins (polyethylene and polypropylene) were used for adherends. However, the focus of this study was to measure the shear strength of polyethylene joints with acrylic adhesives. The effect of abrasion was also studied. Some test specimens were manually abraded using 180 and 320 grade abrasive paper. An additional goal of this work was to examine the effect of temperature and moisture on mechanical strength of adhesive joints.
Resumo:
Most machining tasks require high accuracy and are carried out by dedicated machine-tools. On the other hand, traditional robots are flexible and easy to program, but they are rather inaccurate for certain tasks. Parallel kinematic robots could combine the accuracy and flexibility that are usually needed in machining operations. Achieving this goal requires proper design of the parallel robot. In this chapter, a multi-objective particle swarm optimization algorithm is used to optimize the structure of a parallel robot according to specific criteria. Afterwards, for a chosen optimal structure, the best location of the workpiece with respect to the robot, in a machining robotic cell, is analyzed based on the power consumed by the manipulator during the machining process.
Resumo:
“Drilling of polymeric matrix composites structures”
Resumo:
The distinctive characteristics of carbon fibre reinforced plastics, like low weight or high specific strength, had broadened their use to new fields. Due to the need of assembly to structures, machining operations like drilling are frequent. In result of composites inhomogeneity, this operation can lead to different damages that reduce mechanical strength of the parts in the connection area. From these damages, delamination is the most severe. A proper choice of tool and cutting parameters can reduce delamination substantially. In this work the results obtained with five different tool geometries are compared. Conclusions show that the choice of an adequate drill can reduce thrust forces, thus delamination damage.
Resumo:
The proper disposal of the several types of wastes produced in industrial activities increases production costs. As a consequence, it is common to develop strategies to reuse these wastes in the same process and in different processes or to transform them for use in other processes. This work combines the needs for new synthesis methods of nanomaterials and the reduction of production cost using wastes from citrine juice (orange, lime, lemon and mandarin) to produce a new added value product, green zero-valent iron nanoparticles that can be used in several applications, including environmental remediation. The results indicate that extracts of the tested fruit wastes (peel, albedo and pulp fractions) can be used to produce zero-valent iron nanoparticles (nZVIs). This shows that these wastes can be an added value product. The resulting nZVIs had sizes ranging from 3 up to 300 nm and distinct reactivities (pulp > peel > albedo extracts). All the studied nanoparticles did not present a significant agglomeration/settling tendency when compared to similar nanoparticles, which indicates that they remain in suspension and retain their reactivity.
Resumo:
Background Mobilization with movement (MWM) has been shown to reduce pain, increase range of motion (ROM) and physical function in a range of different musculoskeletal disorders. Despite this evidence, there is a lack of studies evaluating the effects of MWM for hip osteoarthritis (OA). Objectives To determine the immediate effects of MWM on pain, ROM and functional performance in patients with hip OA. Design Randomized controlled trial with immediate follow-up. Method Forty consenting patients (mean age 78 ± 6 years; 54% female) satisfied the eligibility criteria. All participants completed the study. Two forms of MWM techniques (n = 20) or a simulated MWM (sham) (n = 20) were applied. Primary outcomes: pain recorded by numerical rating scale (NRS). Secondary outcomes: hip flexion and internal rotation ROM, and physical performance (timed up and go, sit to stand, and 40 m self placed walk test) were assessed before and after the intervention. Results For the MWM group, pain decreased by 2 points on the NRS, hip flexion increased by 12.2°, internal rotation by 4.4°, and functional tests were also improved with clinically relevant effects following the MWM. There were no significant changes in the sham group for any outcome variable. Conclusions Pain, hip flexion ROM and physical performance immediately improved after the application of MWM in elderly patients suffering hip OA. The observed immediate changes were of clinical relevance. Future studies are required to determine the long-term effects of this intervention.