3 resultados para POLLUTION
em Instituto Politécnico do Porto, Portugal
Resumo:
In this work we isolated from soil and characterized several bacterial strains capable of either resisting high concentrations of heavy metals (Cd2+ or Hg2+ or Pb2+) or degrading the common soil and groundwater pollutants MTBE (methyl-tertbutyl ether) or TCE (trichloroethylene). We then used soil microcosms exposed to MTBE (50 mg/l) or TCE (50 mg/l) in the presence of one heavy metal (Cd 10 ppm or Hg 5 ppm or Pb 50 or 100 ppm) and two bacterial isolates at a time, a degrader plus a metalresistant strain. Some of these two-membered consortia showed degradation efficiencies well higher (49–182% higher) than those expected under the conditions employed, demonstrating the occurrence of a synergetic relationship between the strains used. Our results show the efficacy of the dual augmentation strategy for MTBE and TCE bioremediation in the presence of heavy metals.
Resumo:
Air pollution represents a serious risk not only to environment and human health, but also to historical heritage. In this study, air pollution of the Oporto Metropolitan Area and its main impacts were characterized. The results showed that levels of CO, PM10 and SO2 have been continuously decreasing in the respective metropolitan area while levels of NOx and NO2 have not changed significantly. Traffic emissions were the main source of the determined polycyclic aromatic hydrocarbons (PAHs; 16 PAHs considered by U.S. EPA as priority pollutants, dibenzo[a,l]pyrene and benzo[j]fluoranthene) in air of the respective metropolitan area. The mean concentration of 18 PAHs in air was 69.9±39.7 ng m−3 with 3–4 rings PAHs accounting for 75% of the total ΣPAHs. The health risk analysis of PAHs in air showed that the estimated values of lifetime lung cancer risks considerably exceeded the health-based guideline level. Analytical results also confirm that historical monuments in urban areas act as passive repositories for air pollutants present in the surrounding atmosphere. FTIR and EDX analyses showed that gypsum was the most important constituent of black crusts of the characterized historical monument Monastery of Serra do Pilar classified as “UNESCO World Cultural Heritage”. In black crusts, 4–6 rings compounds accounted approximately for 85% of ΣPAHs. The diagnostic ratios confirmed that traffic emissions were the major source of PAHs in black crusts; PAH composition profiles were very similar for crusts and PM10 and PM2.5.
Resumo:
Nitrat e (NO3 - ) i s per vasi ve i n t he bi ospher e[ 1, 2]. Cont emporar y agri cult ural pr acti ces are a mong t he maj or ant hr opogeni c sources of r eacti ve nitrogen speci es, wher e nitrat ei s t he most abundant of t hese [ 2]. Excessi ve a mount s of r eacti ve nitrogen i n soil s and gr oundwat er ar e creati ng si gnifi cant t hr eat s t o hu man healt h and saf et y [ 3] as well as a host of undesirabl e environment al i mpact s [ 2]; it i s curr ently consi der ed t he second most r el evant environment al i ssue, aft er car bon di oxide e mi ssi ons. Nowadays, a mong t he most r el evant and pr omi si ng appr oaches t o r educe nitrat e concentrati on i n wat er, na mel y gr oundwat er, ar e denitrifi cati on- based pr ocesses [ 4]. Per meabl e r eacti ve barri ers ( PRB) have been pr oven eff ecti ve i n r educi ng vari ous cont ami nant s i n copi ous a mount s, parti cul arl y i n shall ow gr oundwat er [ 5]. However t he possi bl e added eff ecti veness of usi ng nanoparti cl es i n t hese structur es t o obt ai n nitrogen gas from nitrat es requires f urt her i nvesti gati on.