20 resultados para PERIODIC OPTICAL SUPERLATTICE
em Instituto Politécnico do Porto, Portugal
Resumo:
We report within this paper the development of a fiber-optic based sensor for Hg(II) ions. Fluorescent carbon nanoparticles were synthesized by laser ablation and functionalized with PEG200 and N-acetyl-l-cysteine so they can be anionic in nature. This characteristic facilitated their deposition by the layer-by-layer assembly method into thin alternating films along with a cationic polyelectrolyte, poly(ethyleneimine). Such films could be immobilized onto the tip of a glass optical fiber, allowing the construction of an optical fluorescence sensor. When immobilized on the fiber-optic tip, the resultant sensor was capable of selectively detecting sub-micromolar concentrations of Hg(II) with an increased sensitivity compared to carbon dot solutions. The fluorescence of the carbon dots was quenched by up to 44% by Hg(II) ions and interference from other metal ions was minimal.
Resumo:
The systemization and organization of ideas and concepts is an integral part of science. In chemistry, the organization of the periodic table of the chemical elements in the 1860s was one of the greatest scientific breakthroughs ever made and in fact during the 20th century it became a universally recognized scientific icon (1). The periodic table is the fundamental classificatory scheme of the elements and summarizes the realm of chemistry (2). Simply knowing the position of an element in the periodic table tells us about its properties and is usually enough to predict how the element will behave in a wide variety of different situations or reactions (1). Based on this potential mine of information, it is possible to make reliable predictions of the properties of the compounds that each element forms. Nowadays, the concept of the periodic table is starting to interact with other sciences and reports of periodic tables of amino acids (3), genetic codes (4), protein structures (5), and biology (6) can be found in the specialized literature. Symbiosis between science and art, for example, “The Periodic Table of The Elephants” (7), can also be seen. To appeal to a better understanding of the periodic table, the Instituto Superior de Engenharia do Instituto Politécnico do Porto and the Centro de Química da Universidade do Porto promoted a contest and exhibit with the goal of stimulating a wide and heterogeneous audience, ranging from young children and their parents to graduate students from several disciplines, to explore the nature of this icon. Imaginative educational activities such as contests (8–10), games (11, 12), and puzzles (13–15) provided a way to communicate with the general public with the goal of attracting students to science. This also constituted an interesting, informative, and entertaining alternative to non-interactive lectures. Simultaneously, artistic creativity was combined with scientific knowledge.
Resumo:
An optical fiber sensor for Hg(II) in aqueous solution based on sol–gel immobilized carbon dots nanoparticles functionalized with PEG200 and N-acetyl-l-cysteine is described. This sol–gel method generated a thin (about 750 nm), homogenous and smooth (roughness of 2.7±0.7 a˚ ) filmthat immobilizes the carbon dots and allows reversible sensing of Hg(II) in aqueous solution. A fast (less than 10 s), reversible and stable (the fluorescence intensity measurements oscillate less than 1% after several calibration cycles) sensor system was obtained. The sensor allow the detection of submicron molar concentrations of Hg(II) in aqueous solution. The fluorescence intensity of the immobilized carbon dots is quenched by the presence of Hg(II) with a Stern-Volmer constant (pH = 6.8) of 5.3×105M−1.
Resumo:
Cu2ZnSnS4 is a promising semiconductor to be used as absorber in thin film solar cells. In this work, we investigated optical and structural properties of Cu2ZnSnS4 thin films grown by sulphurization of metallic precursors deposited on soda lime glass substrates. The crystalline phases were studied by X-ray diffraction measurements showing the presence of only the Cu2ZnSnS4 phase. The studied films were copper poor and zinc rich as shown by inductively coupled plasma mass spectroscopy. Scanning electron microscopy revealed a good crystallinity and compactness. An absorption coefficient varying between 3 and 4×104cm−1 was measured in the energy range between 1.75 and 3.5 eV. The band gap energy was estimated in 1.51 eV. Photoluminescence spectroscopy showed an asymmetric broad band emission. The dependence of this emission on the excitation power and temperature was investigated and compared to the predictions of the donor-acceptor-type transitions and radiative recombinations in the model of potential fluctuations. Experimental evidence was found to ascribe the observed emission to radiative transitions involving tail states created by potential fluctuations.
Resumo:
In this paper we address the ability of WorldFIP to cope with the real-time requirements of distributed computer-controlled systems (DCCS). Typical DCCS include process variables that must be transferred between network devices both in a periodic and sporadic (aperiodic) basis. The WorldFIP protocol is designed to support both types of traffic. WorldFIP can easily guarantee the timing requirements for the periodic traffic. However, for the aperiodic traffic more complex analysis must be made in order to guarantee its timing requirements. This paper describes work that is being carried out to extend previous relevant work, in order to include the actual schedule for the periodic traffic in the worst-case response time analysis of sporadic traffic in WorldFIP networks
Resumo:
Composition is a practice of key importance in software engineering. When real-time applications are composed it is necessary that their timing properties (such as meeting the deadlines) are guaranteed. The composition is performed by establishing an interface between the application and the physical platform. Such an interface does typically contain information about the amount of computing capacity needed by the application. In multiprocessor platforms, the interface should also present information about the degree of parallelism. Recently there have been quite a few interface proposals. However, they are either too complex to be handled or too pessimistic.In this paper we propose the Generalized Multiprocessor Periodic Resource model (GMPR) that is strictly superior to the MPR model without requiring a too detailed description. We describe a method to generate the interface from the application specification. All these methods have been implemented in Matlab routines that are publicly available.
Resumo:
It has been shown that in reality at least two general scenarios of data structuring are possible: (a) a self-similar (SS) scenario when the measured data form an SS structure and (b) a quasi-periodic (QP) scenario when the repeated (strongly correlated) data form random sequences that are almost periodic with respect to each other. In the second case it becomes possible to describe their behavior and express a part of their randomness quantitatively in terms of the deterministic amplitude–frequency response belonging to the generalized Prony spectrum. This possibility allows us to re-examine the conventional concept of measurements and opens a new way for the description of a wide set of different data. In particular, it concerns different complex systems when the ‘best-fit’ model pretending to be the description of the data measured is absent but the barest necessity of description of these data in terms of the reduced number of quantitative parameters exists. The possibilities of the proposed approach and detection algorithm of the QP processes were demonstrated on actual data: spectroscopic data recorded for pure water and acoustic data for a test hole. The suggested methodology allows revising the accepted classification of different incommensurable and self-affine spatial structures and finding accurate interpretation of the generalized Prony spectroscopy that includes the Fourier spectroscopy as a partial case.
Resumo:
Admission controllers are used to prevent overload in systems with dynamically arriving tasks. Typically, these admission controllers are based on suÆcient (but not necessary) capacity bounds in order to maintain a low computational complexity. In this paper we present how exact admission-control for aperiodic tasks can be eÆciently obtained. Our rst result is an admission controller for purely aperiodic task sets where the test has the same runtime complexity as utilization-based tests. Our second result is an extension of the previous controller for a baseload of periodic tasks. The runtime complexity of this test is lower than for any known exact admission-controller. In addition to presenting our main algorithm and evaluating its performance, we also discuss some general issues concerning admission controllers and their implementation.
Resumo:
Adhesive bonding is nowadays a serious candidate to replace methods such as fastening or riveting, because of attractive mechanical properties. As a result, adhesives are being increasingly used in industries such as the automotive, aerospace and construction. Thus, it is highly important to predict the strength of bonded joints to assess the feasibility of joining during the fabrication process of components (e.g. due to complex geometries) or for repairing purposes. This work studies the tensile behaviour of adhesive joints between aluminium adherends considering different values of adherend thickness (h) and the double-cantilever beam (DCB) test. The experimental work consists of the definition of the tensile fracture toughness (GIC) for the different joint configurations. A conventional fracture characterization method was used, together with a J-integral approach, that take into account the plasticity effects occurring in the adhesive layer. An optical measurement method is used for the evaluation of crack tip opening and adherends rotation at the crack tip during the test, supported by a Matlab® sub-routine for the automated extraction of these quantities. As output of this work, a comparative evaluation between bonded systems with different values of adherend thickness is carried out and complete fracture data is provided in tension for the subsequent strength prediction of joints with identical conditions.
Resumo:
The total antioxidant capacity (TAC) of 28 flavoured water samples was assessed by ferric reducing antioxidant potential (FRAP), oxygen radical absorbance capacity (ORAC), trolox equivalent antioxidant capacity (TEAC) and total reactive antioxidant potential (TRAP) methods. It was observed that flavoured waters had higher antioxidant activity than the corresponding natural ones. The observed differences were attributed to flavours, juice and vitamins. Generally, higher TAC contents were obtained on lemon waters and lower values on guava and raspberry flavoured waters. Lower and higher TACs were obtained by TRAP and ORAC method, respectively. Statistical analysis suggested that vitamins and flavours increased the antioxidant content of the commercial waters.
Resumo:
A novel optical disposable probe for screening fluoroquinolones in fish farming waters is presented, having Norfloxacin (NFX) as target compound. The colorimetric reaction takes place in the solid/liquid interface consisting of a plasticized PVC layer carrying the colorimetric reagent and the sample solution. NFX solutions dropped on top of this solid-sensory surface provided a colour change from light yellow to dark orange. Several metals were tested as colorimetric reagents and Fe(III) was selected. The main parameters affecting the obtained colour were assessed and optimised in both liquid and solid phases. The corresponding studies were conducted by visible spectrophotometry and digital image acquisition. The three coordinates of the HSL model system of the collected image (Hue, Saturation and Lightness) were obtained by simple image management (enabled in any computer). The analytical response of the optimised solid-state optical probe against concentration was tested for several mathematical transformations of the colour coordinates. Linear behaviour was observed for logarithm NFX concentration against Hue+Lightness. Under this condition, the sensor exhibited a limit of detection below 50 μM (corresponding to about 16 mg/mL). Visual inspection also enabled semi-quantitative information. The selectivity was ensured against drugs from other chemical groups than fluoroquinolones. Finally, similar procedure was used to prepare an array of sensors for NFX, consisting on different metal species. Cu(II), Mn(II) and aluminon were selected for this purpose. The sensor array was used to detect NFX in aquaculture water, without any prior sample manipulation.
Resumo:
Cyanobacteria deteriorate the water quality and are responsible for emerging outbreaks and epidemics causing harmful diseases in Humans and animals because of their toxins. Microcystin-LR (MCT) is one of the most relevant cyanotoxin, being the most widely studied hepatotoxin. For safety purposes, the World Health Organization recommends a maximum value of 1 μg L−1 of MCT in drinking water. Therefore, there is a great demand for remote and real-time sensing techniques to detect and quantify MCT. In this work a Fabry–Pérot sensing probe based on an optical fibre tip coated with a MCT selective thin film is presented. The membranes were developed by imprinting MCT in a sol–gel matrix that was applied over the tip of the fibre by dip coating. The imprinting effect was obtained by curing the sol–gel membrane, prepared with (3-aminopropyl) trimethoxysilane (APTMS), diphenyl-dimethoxysilane (DPDMS), tetraethoxysilane (TEOS), in the presence of MCT. The imprinting effect was tested by preparing a similar membrane without template. In general, the fibre Fabry–Pérot with a Molecular Imprinted Polymer (MIP) sensor showed low thermal effect, thus avoiding the need of temperature control in field applications. It presented a linear response to MCT concentration within 0.3–1.4 μg L−1 with a sensitivity of −12.4 ± 0.7 nm L μg−1. The corresponding Non-Imprinted Polymer (NIP) displayed linear behaviour for the same MCT concentration range, but with much less sensitivity, of −5.9 ± 0.2 nm L μg−1. The method shows excellent selectivity for MCT against other species co-existing with the analyte in environmental waters. It was successfully applied to the determination of MCT in contaminated samples. The main advantages of the proposed optical sensor include high sensitivity and specificity, low-cost, robustness, easy preparation and preservation.
Resumo:
We are presenting a simple, low-cost and rapid solid-state optical probe for screening chlorpromazine (CPZ) in aquacultures. The method exploits the colourimetric reaction between CPZ and Fe(III) ion that occurs at a solid/liquid interface, the solid layer consisting of ferric iron entrapped in a layer of plasticized PVC. If solutions containing CPZ are dropped onto such a layer, a colour change occurs from light yellow to dark pink or even light blue, depending on the concentration of CPZ. Visual inspection enables the concentration of CPZ to be estimated. The resulting colouration was also monitored by digital image collection for a more accurate quantification. The three coordinates of the hue, saturation and lightness system were obtained by standard image processing along with mathematical data treatment. The parameters affecting colour were assessed and optimized. Studies were conducted by visible spectrophotometry and digital image acquisition, respectively. The response of the optimized probe towards the concentration of CPZ was tested for several mathematical transformations of the colour coordinates, and a linear relation was found for the sum of hue and luminosity. The limit of detection is 50 μM (corresponding to about 16 μg per mL). The probe enables quick screening for CPZ in real water samples with prior sample treatment.
Resumo:
5th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines
Resumo:
Adhesive bonding is an excellent alternative to traditional joining techniques such as welding, mechanical fastening or riveting. However, there are many factors that have to be accounted for during joint design to accurately predict the joint strength. One of these is the adhesive layer thickness (tA). Most of the results are for epoxy structural adhesives, tailored to perform best with small values of tA, and these show that the lap joint strength decreases with increase of tA (the optimum joint strength is usually obtained with tA values between 0.1 and 0.2 mm). Recently, polyurethane adhesives were made available in the market, designed to perform with larger tA values, and whose fracture behaviour is still not studied. In this work, the effect of tA on the tensile fracture toughness (View the MathML source) of a bonded joint is studied, considering a novel high strength and ductile polyurethane adhesive for the automotive industry. This work consists on the fracture characterization of the bond by a conventional and the J-integral techniques, which accurately account for root rotation effects. An optical measurement method is used for the evaluation of crack tip opening (δn) and adherends rotation at the crack tip (θo) during the test, supported by a Matlab® sub-routine for the automated extraction of these parameters. As output of this work, fracture data is provided in traction for the selected adhesive, enabling the subsequent strength prediction of bonded joints.