5 resultados para Open University of Brazil System
em Instituto Politécnico do Porto, Portugal
Resumo:
This paper describes an architecture conceived to integrate Power Sys-tems tools in a Power System Control Centre, based on an Ambient Intelligent (AmI) paradigm. This architecture is an instantiation of the generic architecture proposed in [1] for developing systems that interact with AmI environments. This architecture has been proposed as a consequence of a methodology for the inclu-sion of Artificial Intelligence in AmI environments (ISyRAmI - Intelligent Sys-tems Research for Ambient Intelligence). The architecture presented in the paper will be able to integrate two applications in the control room of a power system transmission network. The first is SPARSE expert system, used to get diagnosis of incidents and to support power restoration. The second application is an Intelligent Tutoring System (ITS) incorporating two training tools. The first tutoring tool is used to train operators to get the diagnosis of incidents. The second one is another tutoring tool used to train operators to perform restoration procedures.
Resumo:
Control Centre operators are essential to assure a good performance of Power Systems. Operators’ actions are critical in dealing with incidents, especially severe faults, like blackouts. In this paper we present an Intelligent Tutoring approach for training Portuguese Control Centre operators in incident analysis and diagnosis, and service restoration of Power Systems, offering context awareness and an easy integration in the working environment.
Resumo:
Introduction/Aims: The purpose of the study is to evaluate the perception of the organization, the development and the evaluation of the initial stage in the internship of students, in order to improve these activities and to establish the adequate objectives in accordance with the changes concerning the concept of modern pharmacy. Materials and methods: An online survey was made using Google Docs ® -Create Form extension. All results were accumulated and computed using Microsoft Excel ®. The questionnaire consisted of 11 questions, structured on several levels: the objectives and how they can be achieved, internship organization, the internship training (effective participation in specific activities and integration in the pharmaceutical activity), the assessment, the profile of tutor / pharmacy. The questionnaire was completed by students from the Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Haţieganu" Cluj Napoca, Romania. Results and discussions. The study was conducted on 308 students (60% of all students from the study years II-IV. 90% of the respondents had actually participated in the internship, whilst 10% only formally participated in this activity. The main responsibilities of the students were: storage and reception of pharmaceutical products (94%, respectively 79%) and working with the receipts (57%). Most of the students appreciate that they were integrated into the work in the pharmacy, this being due largely pharmacist tutor, who expressed interest and ability in mentoring activities. They appreciated that the role of tutor requires 3-5 years of professional experience. In terms of the internship objectives, these should aim at applying the knowledge gained until the graduation year, but also familiarization with activities which might turn into applications for the coming years. 43% of students believe that only 25% of the theoretical knowledge was useful during the internship. 90 % of the total questioned considered useful to develop a practice guideline adapted to the year of study. Conclusions. The professional training of the future pharmacist’s students depends largely on experience gained by students during the internship activity. Feed-back from the students’ shows that they are aware of the usefulness of the internship, but believe the objectives must be updated and a better correlation between work in pharmacy and theoretical knowledge has to be made. A first step is to develop a practical guide adapted to each year of study. The involvement of the tutor pharmacist is also essential to the success of this activity
Resumo:
This paper studies the dynamics of a system composed of a collection of particles that exhibit collisions between them. Several entropy measures and different impact conditions of the particles are tested. The results reveal a Power Law evolution both of the system energy and the entropy measures, typical in systems having fractional dynamics.
Resumo:
O uso da tecnologia tem crescido nas últimas décadas nas mais diversas áreas, seja na indústria ou no dia-a-dia, e é cada vez mais evidente os benefícios que traz. No desporto não é diferente. Cada dia surgem novos desenvolvimentos objetivando a melhoria do desempenho dos praticantes de atividades físicas, possibilitando atingir resultados nunca antes pensados. Além disto, a utilização da tecnologia no desporto permite a obtenção de dados biomecânicos que podem ser utilizados tanto no treinamento quando na melhoria da qualidade de vida dos atletas auxiliando na prevenção de lesões, por exemplo. Deste modo, o presente projeto se aplica na área do desporto, nomeadamente, na modalidade do surfe, onde a ausência de trabalhos científicos ainda é elevada, aliando a tecnologia eletrônica ao desporto para quantificar informações até então desconhecidas. Três fatores básicos de desempenho foram levantados, sendo eles: equilíbrio, posicionamento dos pés e movimentação da prancha de surfe. Estes fatores levaram ao desenvolvimento de um sistema capaz de medi-los dinamicamente através da medição das forças plantares e da rotação da prancha de surfe. Além da medição dos fatores, o sistema é capaz de armazenar os dados adquiridos localmente através de um cartão de memória, para posterior análise; e também enviá-los através de uma comunicação sem fio, permitindo a visualização do centro de pressões plantares; dos ângulos de rotação da prancha de surfe; e da ativação dos sensores; em tempo real. O dispositivo consiste em um sistema eletrônico embarcado composto por um microcontrolador ATMEGA1280; um circuito de aquisição e condicionamento de sinal analógico; uma central inercial; um módulo de comunicação sem fio RN131; e um conjunto de sensores de força Flexiforce. O firmware embarcado foi desenvolvido em linguagem C. O software Matlab foi utilizado para receção de dados e visualização em tempo real. Os testes realizados demostraram que o funcionamento do sistema atende aos requisitos propostos, fornecendo informação acerca do equilíbrio, através do centro de pressões; do posicionamento dos pés, através da distribuição das pressões plantares; e do movimento da prancha nos eixos pitch e roll, através da central inercial. O erro médio de medição de força verificado foi de -0.0012 ± 0.0064 N, enquanto a mínima distância alcançada na transmissão sem fios foi de 100 m. A potência medida do sistema foi de 330 mW.