36 resultados para Object Modeling
em Instituto Politécnico do Porto, Portugal
Resumo:
Dynamical systems theory is used here as a theoretical language and tool to design a distributed control architecture for a team of two mobile robots that must transport a long object and simultaneously avoid obstacles. In this approach the level of modeling is at the level of behaviors. A “dynamics” of behavior is defined over a state space of behavioral variables (heading direction and path velocity). The environment is also modeled in these terms by representing task constraints as attractors (i.e. asymptotically stable states) or reppelers (i.e. unstable states) of behavioral dynamics. For each robot attractors and repellers are combined into a vector field that governs the behavior. The resulting dynamical systems that generate the behavior of the robots may be nonlinear. By design the systems are tuned so that the behavioral variables are always very close to one attractor. Thus the behavior of each robot is controled by a time series of asymptotically stable states. Computer simulations support the validity of our dynamic model architectures.
Resumo:
This paper proposes a novel framework for modelling the Value for the Customer, the so-called the Conceptual Model for Decomposing Value for the Customer (CMDVC). This conceptual model is first validated through an exploratory case study where the authors validate both the proposed constructs of the model and their relations. In a second step the authors propose a mathematical formulation for the CMDVC as well as a computational method. This has enabled the final quantitative discussion of how the CMDVC can be applied and used in the enterprise environment, and the final validation by the people in the enterprise. Along this research, we were able to confirm that the results of this novel quantitative approach to model the Value for the Customer is consistent with the company's empirical experience. The paper further discusses the merits and limitations of this approach, proposing that the model is likely to bring value to support not only the contract preparation at an Ex-Ante Negotiation Phase, as demonstrated, but also along the actual negotiation process, as finally confirmed by an enterprise testimonial.
Resumo:
The paper proposes a methodology to increase the probability of delivering power to any load point by identifying new investments in distribution energy systems. The proposed methodology is based on statistical failure and repair data of distribution components and it uses a fuzzy-probabilistic modeling for the components outage parameters. The fuzzy membership functions of the outage parameters of each component are based on statistical records. A mixed integer nonlinear programming optimization model is developed in order to identify the adequate investments in distribution energy system components which allow increasing the probability of delivering power to any customer in the distribution system at the minimum possible cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 180 bus distribution network.
Resumo:
In the context of previous publications, we propose a new lightweight UM process, intended to work as a tourism recommender system in a commercial environment. The new process tackles issues like cold start, gray sheep and over specialization through a rich user model and the application of a gradual forgetting function to the collected user action history. Also, significant performance improvements were achieved regarding the previously proposed UM process.
Resumo:
This paper aims to present a multi-agent model for a simulation, whose goal is to help one specific participant of multi-criteria group decision making process.This model has five main intervenient types: the human participant, who is using the simulation and argumentation support system; the participant agents, one associated to the human participant and the others simulating the others human members of the decision meeting group; the directory agent; the proposal agents, representing the different alternatives for a decision (the alternatives are evaluated based on criteria); and the voting agent responsiblefor all voting machanisms.At this stage it is proposed a two phse algorithm. In the first phase each participantagent makes his own evaluation of the proposals under discussion, and the voting agent proposes a simulation of a voting process.In the second phase, after the dissemination of the voting results,each one ofthe partcipan agents will argue to convince the others to choose one of the possible alternatives. The arguments used to convince a specific participant are dependent on agent knowledge about that participant. This two-phase algorithm is applied iteratively.
Resumo:
Mestrado em Engenharia Informática
Resumo:
This document is a survey in the research area of User Modeling (UM) for the specific field of Adaptive Learning. The aims of this document are: To define what it is a User Model; To present existing and well known User Models; To analyze the existent standards related with UM; To compare existing systems. In the scientific area of User Modeling (UM), numerous research and developed systems already seem to promise good results, but some experimentation and implementation are still necessary to conclude about the utility of the UM. That is, the experimentation and implementation of these systems are still very scarce to determine the utility of some of the referred applications. At present, the Student Modeling research goes in the direction to make possible reuse a student model in different systems. The standards are more and more relevant for this effect, allowing systems communicate and to share data, components and structures, at syntax and semantic level, even if most of them still only allow syntax integration.
Resumo:
Mestrado em Engenharia Informática. Sistemas Gráficos e Multimédia.
Resumo:
O desenvolvimento de software orientado a modelos defende a utilização dos modelos como um artefacto que participa activamente no processo de desenvolvimento. O modelo ocupa uma posição que se encontra ao mesmo nível do código. Esta é uma abordagem importante que tem sido alvo de atenção crescente nos últimos tempos. O Object Management Group (OMG) é o responsável por uma das principais especificações utilizadas na definição da arquitectura dos sistemas cujo desenvolvimento é orientado a modelos: o Model Driven Architecture (MDA). Os projectos que têm surgido no âmbito da modelação e das linguagens específicas de domínio para a plataforma Eclipse são um bom exemplo da atenção dada a estas áreas. São projectos totalmente abertos à comunidade, que procuram respeitar os standards e que constituem uma excelente oportunidade para testar e por em prática novas ideias e abordagens. Nesta dissertação foram usadas ferramentas criadas no âmbito do Amalgamation Project, desenvolvido para a plataforma Eclipse. Explorando o UML e usando a linguagem QVT, desenvolveu-se um processo automático para extrair elementos da arquitectura do sistema a partir da definição de requisitos. Os requisitos são representados por modelos UML que são transformados de forma a obter elementos para uma aproximação inicial à arquitectura do sistema. No final, obtêm-se um modelo UML que agrega os componentes, interfaces e tipos de dados extraídos a partir dos modelos dos requisitos. É uma abordagem orientada a modelos que mostrou ser exequível, capaz de oferecer resultados práticos e promissora no que concerne a trabalho futuro.
Resumo:
Uma linha de pesquisa e desenvolvimento na área da robótica, que tem recebido atenção crescente nos últimos anos, é o desenvolvimento de robôs biologicamente inspirados. A ideia é adquirir conhecimento de seres biológicos, cuja evolução ocorreu ao longo de milhões de anos, e aproveitar o conhecimento assim adquirido para implementar a locomoção pelos mesmos métodos (ou pelo menos usar a inspiração biológica) nas máquinas que se constroem. Acredita-se que desta forma é possível desenvolver máquinas com capacidades semelhantes às dos seres biológicos em termos de capacidade e eficiência energética de locomoção. Uma forma de compreender melhor o funcionamento destes sistemas, sem a necessidade de desenvolver protótipos dispendiosos e com longos tempos de desenvolvimento é usar modelos de simulação. Com base nestas ideias, o objectivo deste trabalho passa por efectuar um estudo da biomecânica da santola (Maja brachydactyla), uma espécie de caranguejo comestível pertencente à família Majidae de artrópodes decápodes, usando a biblioteca de ferramentas SimMechanics da aplicação Matlab / Simulink. Esta tese descreve a anatomia e locomoção da santola, a sua modelação biomecânica e a simulação do seu movimento no ambiente Matlab / SimMechanics e SolidWorks.
Resumo:
The tongue is the most important and dynamic articulator for speech formation, because of its anatomic aspects (particularly, the large volume of this muscular organ comparatively to the surrounding organs of the vocal tract) and also due to the wide range of movements and flexibility that are involved. In speech communication research, a variety of techniques have been used for measuring the three-dimensional vocal tract shapes. More recently, magnetic resonance imaging (MRI) becomes common; mainly, because this technique allows the collection of a set of static and dynamic images that can represent the entire vocal tract along any orientation. Over the years, different anatomical organs of the vocal tract have been modelled; namely, 2D and 3D tongue models, using parametric or statistical modelling procedures. Our aims are to present and describe some 3D reconstructed models from MRI data, for one subject uttering sustained articulations of some typical Portuguese sounds. Thus, we present a 3D database of the tongue obtained by stack combinations with the subject articulating Portuguese vowels. This 3D knowledge of the speech organs could be very important; especially, for clinical purposes (for example, for the assessment of articulatory impairments followed by tongue surgery in speech rehabilitation), and also for a better understanding of acoustic theory in speech formation.
Resumo:
The mechanisms of speech production are complex and have been raising attention from researchers of both medical and computer vision fields. In the speech production mechanism, the articulator’s study is a complex issue, since they have a high level of freedom along this process, namely the tongue, which instigates a problem in its control and observation. In this work it is automatically characterized the tongues shape during the articulation of the oral vowels of Portuguese European by using statistical modeling on MR-images. A point distribution model is built from a set of images collected during artificially sustained articulations of Portuguese European sounds, which can extract the main characteristics of the motion of the tongue. The model built in this work allows under standing more clearly the dynamic speech events involved during sustained articulations. The tongue shape model built can also be useful for speech rehabilitation purposes, specifically to recognize the compensatory movements of the articulators during speech production.
Resumo:
This study modeled the impact on freshwater ecosystems of pharmaceuticals detected in biosolids following application on agricultural soils. The detected sulfonamides and hydrochlorothiazide displayed comparatively moderate retention in solid matrices and, therefore, higher transfer fractions from biosolids to the freshwater compartment. However, the residence times of these pharmaceuticals in freshwater were estimated to be short due to abiotic degradation processes. The non-steroidal anti-inflammatory mefenamic acid had the highest environmental impact on aquatic ecosystems and warrants further investigation. The estimation of the solid-water partitioning coefficient was generally the most influential parameter of the probabilistic comparative impact assessment. These results and the modeling approach used in this study serve to prioritize pharmaceuticals in the research effort to assess the risks and the environmental impacts on aquatic biota of these emerging pollutants.
Resumo:
Dynamical systems theory in this work is used as a theoretical language and tool to design a distributed control architecture for a team of three robots that must transport a large object and simultaneously avoid collisions with either static or dynamic obstacles. The robots have no prior knowledge of the environment. The dynamics of behavior is defined over a state space of behavior variables, heading direction and path velocity. Task constraints are modeled as attractors (i.e. asymptotic stable states) of the behavioral dynamics. For each robot, these attractors are combined into a vector field that governs the behavior. By design the parameters are tuned so that the behavioral variables are always very close to the corresponding attractors. Thus the behavior of each robot is controlled by a time series of asymptotical stable states. Computer simulations support the validity of the dynamical model architecture.
Resumo:
In this paper dynamical systems theory is used as a theoretical language and tool to design a distributed control architecture for a team of two robots that must transport a large object and simultaneously avoid collisions with obstacles (either static or dynamic). This work extends the previous work with two robots (see [1] and [5]). However here we demonstrate that it’s possible to simplify the architecture presented in [1] and [5] and reach an equally stable global behavior. The robots have no prior knowledge of the environment. The dynamics of behavior is defined over a state space of behavior variables, heading direction and path velocity. Task constrains are modeled as attractors (i.e. asymptotic stable states) of a behavioral dynamics. For each robot, these attractors are combined into a vector field that governs the behavior. By design the parameters are tuned so that the behavioral variables are always very close to the corresponding attractors. Thus the behavior of each robot is controlled by a time series of asymptotic stable states. Computer simulations support the validity of the dynamical model architecture.