3 resultados para ONE-STEP SYNTHESIS

em Instituto Politécnico do Porto, Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes an one-step decentralised coordination model based on an effective feedback mechanism to reduce the complexity of the needed interactions among interdependent nodes of a cooperative distributed system until a collective adaptation behaviour is determined. Positive feedback is used to reinforce the selection of the new desired global service solution, while negative feedback discourages nodes to act in a greedy fashion as this adversely impacts on the provided service levels at neighbouring nodes. The reduced complexity and overhead of the proposed decentralised coordination model are validated through extensive evaluations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mestrado em Computação e Instrumentação Médica

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Forecasting future sales is one of the most important issues that is beyond all strategic and planning decisions in effective operations of retail businesses. For profitable retail businesses, accurate demand forecasting is crucial in organizing and planning production, purchasing, transportation and labor force. Retail sales series belong to a special type of time series that typically contain trend and seasonal patterns, presenting challenges in developing effective forecasting models. This work compares the forecasting performance of state space models and ARIMA models. The forecasting performance is demonstrated through a case study of retail sales of five different categories of women footwear: Boots, Booties, Flats, Sandals and Shoes. On both methodologies the model with the minimum value of Akaike's Information Criteria for the in-sample period was selected from all admissible models for further evaluation in the out-of-sample. Both one-step and multiple-step forecasts were produced. The results show that when an automatic algorithm the overall out-of-sample forecasting performance of state space and ARIMA models evaluated via RMSE, MAE and MAPE is quite similar on both one-step and multi-step forecasts. We also conclude that state space and ARIMA produce coverage probabilities that are close to the nominal rates for both one-step and multi-step forecasts.