4 resultados para Nonsteroidal anti-inflammatory drugs
em Instituto Politécnico do Porto, Portugal
Resumo:
The occurrence of seven pharmaceuticals and two metabolites belonging to non-steroidal anti-inflammatory drugs and analgesics therapeutic classes was studied in seawaters. A total of 101 samples covering fourteen beaches and five cities were evaluated in order to assess the spatial distribution of pharmaceuticals among north Portuguese coast. Seawaters were selected in order to embrace different bathing water quality (excellent, good and sufficient). Acetaminophen, ketoprofen and the metabolite hydroxyibuprofen were detected in all the seawater samples at maximum concentrations of 584, 89.7 and 287 ng L− 1, respectively. Carboxyibuprofen had the highest seawater concentration (1227 ng L− 1). The temporal distribution of the selected pharmaceuticals during the bathing season showed that, in general, higher concentrations were detected in August and September. The environmental risk posed by the pharmaceuticals detected in seawaters towards different trophic levels (fish, daphnids and algae) was also assessed. Only diclofenac showed hazard quotients above one for fish, representing a potential risk for aquatic organisms. These results were observed in seawaters classified as excellent bathing water. Additional data is needed in order to support the identification and prioritization of risks posed by pharmaceuticals in marine environment.
Resumo:
An analytical methodology for the simultaneous determination of seven pharmaceuticals and two metabolites belonging to the non-steroidal anti-inflammatory drugs (NSAIDs) and analgesics therapeutic groups was developed based on off-line solid-phase extraction and ultra-high performance liquid chromatography coupled to tandem mass spectrometry (SPE–UHPLC–MS/MS). Extraction conditions were optimized taking into account parameters like sorbent material, sample volume and sample pH. Method detection limits (MDLs) ranging from 0.02 to 8.18 ng/L were obtained. This methodology was successfully applied to the determination of the selected pharmaceuticals in seawater samples of Atlantic Ocean in the Northern Portuguese coast. All the pharmaceuticals have been detected in the seawater samples, with pharmaceuticals like ibuprofen, acetaminophen, ketoprofen and the metabolite hydroxyibuprofen being the most frequently detected at concentrations that can reach some hundreds of ng/L.
Resumo:
The flow rates of drying and nebulizing gas, heat block and desolvation line temperatures and interface voltage are potential electrospray ionization parameters as they may enhance sensitivity of the mass spectrometer. The conditions that give higher sensitivity of 13 pharmaceuticals were explored. First, Plackett-Burman design was implemented to screen significant factors, and it was concluded that interface voltage and nebulizing gas flow were the only factors that influence the intensity signal for all pharmaceuticals. This fractionated factorial design was projected to set a full 2(2) factorial design with center points. The lack-of-fit test proved to be significant. Then, a central composite face-centered design was conducted. Finally, a stepwise multiple linear regression and subsequently an optimization problem solving were carried out. Two main drug clusters were found concerning the signal intensities of all runs of the augmented factorial design. p-Aminophenol, salicylic acid, and nimesulide constitute one cluster as a result of showing much higher sensitivity than the remaining drugs. The other cluster is more homogeneous with some sub-clusters comprising one pharmaceutical and its respective metabolite. It was observed that instrumental signal increased when both significant factors increased with maximum signal occurring when both codified factors are set at level +1. It was also found that, for most of the pharmaceuticals, interface voltage influences the intensity of the instrument more than the nebulizing gas flowrate. The only exceptions refer to nimesulide where the relative importance of the factors is reversed and still salicylic acid where both factors equally influence the instrumental signal. Graphical Abstract ᅟ.
Resumo:
Mestrado em Engenharia Química - Ramo Tecnologias de Protecção Ambiental