27 resultados para Nonlinear Prediction
em Instituto Politécnico do Porto, Portugal
Resumo:
This paper studies the describing function (DF) of systems consisting in a mass subjected to nonlinear friction. The friction force is composed in three components namely, the viscous, the Coulomb and the static forces. The system dynamics is analyzed in the DF perspective revealing a fractional-order behaviour. The reliability of the DF method is evaluated through the signal harmonic content and the limit cycle prediction.
Resumo:
This article investigates the limit cycle (LC) prediction of systems with backlash by means of the describing function (DF) when using discrete fractional-order (FO) algorithms. The DF is an approximate method that gives good estimates of LCs. The implementation of FO controllers requires the use of rational approximations, but such realizations produce distinct dynamic types of behavior. This study analyzes the accuracy in the prediction of LCs, namely their amplitude and frequency, when using several different algorithms. To illustrate this problem we use FO-PID algorithms in the control of systems with backlash.
Resumo:
In real optimization problems, usually the analytical expression of the objective function is not known, nor its derivatives, or they are complex. In these cases it becomes essential to use optimization methods where the calculation of the derivatives, or the verification of their existence, is not necessary: the Direct Search Methods or Derivative-free Methods are one solution. When the problem has constraints, penalty functions are often used. Unfortunately the choice of the penalty parameters is, frequently, very difficult, because most strategies for choosing it are heuristics strategies. As an alternative to penalty function appeared the filter methods. A filter algorithm introduces a function that aggregates the constrained violations and constructs a biobjective problem. In this problem the step is accepted if it either reduces the objective function or the constrained violation. This implies that the filter methods are less parameter dependent than a penalty function. In this work, we present a new direct search method, based on simplex methods, for general constrained optimization that combines the features of the simplex method and filter methods. This method does not compute or approximate any derivatives, penalty constants or Lagrange multipliers. The basic idea of simplex filter algorithm is to construct an initial simplex and use the simplex to drive the search. We illustrate the behavior of our algorithm through some examples. The proposed methods were implemented in Java.
Resumo:
The filter method is a technique for solving nonlinear programming problems. The filter algorithm has two phases in each iteration. The first one reduces a measure of infeasibility, while in the second the objective function value is reduced. In real optimization problems, usually the objective function is not differentiable or its derivatives are unknown. In these cases it becomes essential to use optimization methods where the calculation of the derivatives or the verification of their existence is not necessary: direct search methods or derivative-free methods are examples of such techniques. In this work we present a new direct search method, based on simplex methods, for general constrained optimization that combines the features of simplex and filter methods. This method neither computes nor approximates derivatives, penalty constants or Lagrange multipliers.
Resumo:
We study the observability of linear and nonlinear fractional differential systems of order 0 < α < 1 by using the Mittag-Leffler matrix function and the application of Banach’s contraction mapping theorem. Several examples illustrate the concepts.
Resumo:
This paper presents a differential evolution heuristic to compute a solution of a system of nonlinear equations through the global optimization of an appropriate merit function. Three different mutation strategies are combined to generate mutant points. Preliminary numerical results show the effectiveness of the presented heuristic.
Resumo:
Geostatistics has been successfully used to analyze and characterize the spatial variability of environmental properties. Besides giving estimated values at unsampled locations, it provides a measure of the accuracy of the estimate, which is a significant advantage over traditional methods used to assess pollution. In this work universal block kriging is novelty used to model and map the spatial distribution of salinity measurements gathered by an Autonomous Underwater Vehicle in a sea outfall monitoring campaign, with the aim of distinguishing the effluent plume from the receiving waters, characterizing its spatial variability in the vicinity of the discharge and estimating dilution. The results demonstrate that geostatistical methodology can provide good estimates of the dispersion of effluents that are very valuable in assessing the environmental impact and managing sea outfalls. Moreover, since accurate measurements of the plume’s dilution are rare, these studies might be very helpful in the future to validate dispersion models.
Resumo:
Finding the optimal value for a problem is usual in many areas of knowledge where in many cases it is needed to solve Nonlinear Optimization Problems. For some of those problems it is not possible to determine the expression for its objective function and/or its constraints, they are the result of experimental procedures, might be non-smooth, among other reasons. To solve such problems it was implemented an API contained methods to solve both constrained and unconstrained problems. This API was developed to be used either locally on the computer where the application is being executed or remotely on a server. To obtain the maximum flexibility both from the programmers’ and users’ points of view, problems can be defined as a Java class (because this API was developed in Java) or as a simple text input that is sent to the API. For this last one to be possible it was also implemented on the API an expression evaluator. One of the drawbacks of this expression evaluator is that it is slower than the Java native code. In this paper it is presented a solution that combines both options: the problem can be expressed at run-time as a string of chars that are converted to Java code, compiled and loaded dynamically. To wide the target audience of the API, this new expression evaluator is also compatible with the AMPL format.
Resumo:
Solving systems of nonlinear equations is a very important task since the problems emerge mostly through the mathematical modelling of real problems that arise naturally in many branches of engineering and in the physical sciences. The problem can be naturally reformulated as a global optimization problem. In this paper, we show that a self-adaptive combination of a metaheuristic with a classical local search method is able to converge to some difficult problems that are not solved by Newton-type methods.
Resumo:
Nonlinear Optimization Problems are usual in many engineering fields. Due to its characteristics the objective function of some problems might not be differentiable or its derivatives have complex expressions. There are even cases where an analytical expression of the objective function might not be possible to determine either due to its complexity or its cost (monetary, computational, time, ...). In these cases Nonlinear Optimization methods must be used. An API, including several methods and algorithms to solve constrained and unconstrained optimization problems was implemented. This API can be accessed not only as traditionally, by installing it on the developer and/or user computer, but it can also be accessed remotely using Web Services. As long as there is a network connection to the server where the API is installed, applications always access to the latest API version. Also an Web-based application, using the proposed API, was developed. This application is to be used by users that do not want to integrate methods in applications, and simply want to have a tool to solve Nonlinear Optimization Problems.
Resumo:
Adhesive joints are largely employed nowadays as a fast and effective joining process. The respective techniques for strength prediction have also improved over the years. Cohesive Zone Models (CZM’s) coupled to Finite Element Method (FEM) analyses surpass the limitations of stress and fracture criteria and allow modelling damage. CZM’s require the energy release rates in tension (Gn) and shear (Gs) and respective fracture energies in tension (Gnc) and shear (Gsc). Additionally, the cohesive strengths (tn0 for tension and ts0 for shear) must also be defined. In this work, the influence of the CZM parameters of a triangular CZM used to model a thin adhesive layer is studied, to estimate their effect on the predictions. Some conclusions were drawn for the accuracy of the simulation results by variations of each one of these parameters.
Resumo:
Despite the fact that their physical properties make them an attractive family of materials, composites machining can cause several damage modes such as delamination, fibre pull-out, thermal degradation, and others. Minimization of axial thrust force during drilling reduces the probability of delamination onset, as it has been demonstrated by analytical models based on linear elastic fracture mechanics (LEFM). A finite element model considering solid elements of the ABAQUS® software library and interface elements including a cohesive damage model was developed in order to simulate thrust forces and delamination onset during drilling. Thrust force results for delamination onset are compared with existing analytical models.
Resumo:
This work reports on the experimental and numerical study of the bending behaviour of two-dimensional adhesively-bonded scarf repairs of carbon-epoxy laminates, bonded with the ductile adhesive Araldite 2015®. Scarf angles varying from 2 to 45º were tested. The experimental work performed was used to validate a numerical Finite Element analysis using ABAQUS® and a methodology developed by the authors to predict the strength of bonded assemblies. This methodology consists on replacing the adhesive layer by cohesive elements, including mixed-mode criteria to deal with the mixed-mode behaviour usually observed in structures. Trapezoidal laws in pure modes I and II were used to account for the ductility of the adhesive used. The cohesive laws in pure modes I and II were determined with Double Cantilever Beam and End-Notched Flexure tests, respectively, using an inverse method. Since in the experiments interlaminar and transverse intralaminar failures of the carbon-epoxy components also occurred in some regions, cohesive laws to simulate these failure modes were also obtained experimentally with a similar procedure. A good correlation with the experiments was found on the elastic stiffness, maximum load and failure mode of the repairs, showing that this methodology simulates accurately the mechanical behaviour of bonded assemblies.
Resumo:
Polyolefins are especially difficult to bond due to their non-polar, non-porous and chemically inert surfaces. Acrylic adhesives used in industry are particularly suited to bond these materials, including many grades of polypropylene (PP) and polyethylene (PE), without special surface preparation. In this work, the tensile strength of single-lap PE and mixed joints bonded with an acrylic adhesive was investigated. The mixed joints included PE with aluminium (AL) or carbon fibre reinforced plastic (CFRP) substrates. The PE substrates were only cleaned with isopropanol, which assured cohesive failures. For the PE CFRP joints, three different surfaces preparations were employed for the CFRP substrates: cleaning with acetone, abrasion with 100 grit sand paper and peel-ply finishing. In the PE AL joints, the AL bonding surfaces were prepared by the following methods: cleaning with acetone, abrasion with 180 and 320 grit sand papers, grit blasting and chemical etching with chromic acid. After abrasion of the CFRP and AL substrates, the surfaces were always cleaned with acetone. The tensile strengths were compared with numerical results from ABAQUS® and a mixed mode (I+II) cohesive damage model. A good agreement was found between the experimental and numerical results, except for the PE AL joints, since the AL surface treatments were not found to be effective.
Resumo:
The structural integrity of multi-component structures is usually determined by the strength and durability of their unions. Adhesive bonding is often chosen over welding, riveting and bolting, due to the reduction of stress concentrations, reduced weight penalty and easy manufacturing, amongst other issues. In the past decades, the Finite Element Method (FEM) has been used for the simulation and strength prediction of bonded structures, by strength of materials or fracture mechanics-based criteria. Cohesive-zone models (CZMs) have already proved to be an effective tool in modelling damage growth, surpassing a few limitations of the aforementioned techniques. Despite this fact, they still suffer from the restriction of damage growth only at predefined growth paths. The eXtended Finite Element Method (XFEM) is a recent improvement of the FEM, developed to allow the growth of discontinuities within bulk solids along an arbitrary path, by enriching degrees of freedom with special displacement functions, thus overcoming the main restriction of CZMs. These two techniques were tested to simulate adhesively bonded single- and double-lap joints. The comparative evaluation of the two methods showed their capabilities and/or limitations for this specific purpose.