54 resultados para Non-linear parameter estimation
em Instituto Politécnico do Porto, Portugal
Resumo:
Screening of topologies developed by hierarchical heuristic procedures can be carried out by comparing their optimal performance. In this work we will be exploiting mono-objective process optimization using two algorithms, simulated annealing and tabu search, and four different objective functions: two of the net present value type, one of them including environmental costs and two of the global potential impact type. The hydrodealkylation of toluene to produce benzene was used as case study, considering five topologies with different complexities mainly obtained by including or not liquid recycling and heat integration. The performance of the algorithms together with the objective functions was observed, analyzed and discussed from various perspectives: average deviation of results for each algorithm, capacity for producing high purity product, screening of topologies, objective functions robustness in screening of topologies, trade-offs between economic and environmental type objective functions and variability of optimum solutions.
Resumo:
Ancillary services represent a good business opportunity that must be considered by market players. This paper presents a new methodology for ancillary services market dispatch. The method considers the bids submitted to the market and includes a market clearing mechanism based on deterministic optimization. An Artificial Neural Network is used for day-ahead prediction of Regulation Down, regulation-up, Spin Reserve and Non-Spin Reserve requirements. Two test cases based on California Independent System Operator data concerning dispatch of Regulation Down, Regulation Up, Spin Reserve and Non-Spin Reserve services are included in this paper to illustrate the application of the proposed method: (1) dispatch considering simple bids; (2) dispatch considering complex bids.
Resumo:
This paper addresses the use of multidimensional scaling in the evaluation of controller performance. Several nonlinear systems are analyzed based on the closed loop time response under the action of a reference step input signal. Three alternative performance indices, based on the time response, Fourier analysis, and mutual information, are tested. The numerical experiments demonstrate the feasibility of the proposed methodology and motivate its extension for other performance measures and new classes of nonlinearities.
Resumo:
This work deals with the numerical simulation of air stripping process for the pre-treatment of groundwater used in human consumption. The model established in steady state presents an exponential solution that is used, together with the Tau Method, to get a spectral approach of the solution of the system of partial differential equations associated to the model in transient state.
Resumo:
This work deals with the numerical simulation of air stripping process for the pre-treatment of groundwater used in human consumption. The model established in steady state presents an exponential solution that is used, together with the Tau Method, to get a spectral approach of the solution of the system of partial differential equations associated to the model in transient state.
Resumo:
New arguments proving that successive (repeated) measurements have a memory and actually remember each other are presented. The recognition of this peculiarity can change essentially the existing paradigm associated with conventional observation in behavior of different complex systems and lead towards the application of an intermediate model (IM). This IM can provide a very accurate fit of the measured data in terms of the Prony's decomposition. This decomposition, in turn, contains a small set of the fitting parameters relatively to the number of initial data points and allows comparing the measured data in cases where the “best fit” model based on some specific physical principles is absent. As an example, we consider two X-ray diffractometers (defined in paper as A- (“cheap”) and B- (“expensive”) that are used after their proper calibration for the measuring of the same substance (corundum a-Al2O3). The amplitude-frequency response (AFR) obtained in the frame of the Prony's decomposition can be used for comparison of the spectra recorded from (A) and (B) - X-ray diffractometers (XRDs) for calibration and other practical purposes. We prove also that the Fourier decomposition can be adapted to “ideal” experiment without memory while the Prony's decomposition corresponds to real measurement and can be fitted in the frame of the IM in this case. New statistical parameters describing the properties of experimental equipment (irrespective to their internal “filling”) are found. The suggested approach is rather general and can be used for calibration and comparison of different complex dynamical systems in practical purposes.
Residential property loans and performance during property price booms: evidence from European banks
Resumo:
Understanding the performance of banks is of the utmost relevance, because of the impact of this sector on economic growth and financial stability. Of all the different assets that make up a bank portfolio, the residential mortgage loans constitute one of its main. Using the dynamic panel data method, we analyse the influence of residential mortgage loans on bank profitability and risk, using a sample of 555 banks in the European Union (EU-15), over the period from 1995 to 2008. We find that banks with larger weights of residential mortgage loans show lower credit risk in good times. This result explains why banks rush to lend on property during booms due to the positive effects it has on credit risk. The results show further that credit risk and profitability are lower during the upturn in the residential property price cycle. The results also reveal the existence of a non-linear relationship (U-shaped marginal effect), as a function of bank’s risk, between profitability and the residential mortgage loans exposure. For those banks that have high credit risk, a large exposure of residential mortgage loans is associated with higher risk-adjusted profitability, through lower risk. For banks with a moderate/low credit risk, the effects of higher residential mortgage loan exposure on its risk-adjusted profitability are also positive or marginally positive.
Resumo:
Understanding the performance of banks is of the u tmost importance due to the impact the sector may have on economic growth and financial stability. Residential mortgage loans constitute a large proportion of the portfolio of many banks and are one of the key assets in the determination of performance. Using a dynamic panel model , we analyse the impact of res idential mortgage loans on bank profitability and risk , based on a sample of 555 banks in the European Union ( EU - 15 ) , over the period from 1995 to 2008. We find that banks with larger weight s in residential mortgage loans display lower credit risk in good market conditions . This result may explain why banks rush to lend on property during b ooms due to the positive effect it has on credit risk . The results also show that credit risk and profitability are lower during the upturn in the residential property cy cle. Furthermore, t he results reveal the existence of a non - linear relationship ( U - shaped marginal effect), as a function of bank’s risk, between profitability and residential mortgage exposure . For those banks that have high er credit risk, a large exposur e to residential loans is associated with increased risk - adjusted profitability, through a reduction in risk. For banks with a moderate to low credit risk, the impact of higher exposure are also positive on risk - adjusted profitability.
Resumo:
A geração de trajectórias de robôs em tempo real é uma tarefa muito complexa, não
existindo ainda um algoritmo que a permita resolver de forma eficaz. De facto, há
controladores eficientes para trajectórias previamente definidas, todavia, a adaptação a
variações imprevisíveis, como sendo terrenos irregulares ou obstáculos, constitui ainda um
problema em aberto na geração de trajectórias em tempo real de robôs.
Neste trabalho apresentam-se modelos de geradores centrais de padrões de locomoção
(CPGs), inspirados na biologia, que geram os ritmos locomotores num robô quadrúpede.
Os CPGs são modelados matematicamente por sistemas acoplados de células (ou
neurónios), sendo a dinâmica de cada célula dada por um sistema de equações diferenciais
ordinárias não lineares. Assume-se que as trajectórias dos robôs são constituídas por esta
parte rítmica e por uma parte discreta. A parte discreta pode ser embebida na parte rítmica,
(a.1) como um offset ou (a.2) adicionada às expressões rítmicas, ou (b) pode ser calculada
independentemente e adicionada exactamente antes do envio dos sinais para as articulações
do robô. A parte discreta permite inserir no passo locomotor uma perturbação, que poderá
estar associada à locomoção em terrenos irregulares ou à existência de obstáculos na
trajectória do robô. Para se proceder á análise do sistema com parte discreta, será variado o
parâmetro g. O parâmetro g, presente nas equações da parte discreta, representa o offset do
sinal após a inclusão da parte discreta.
Revê-se a teoria de bifurcação e simetria que permite a classificação das soluções
periódicas produzidas pelos modelos de CPGs com passos locomotores quadrúpedes. Nas
simulações numéricas, usam-se as equações de Morris-Lecar e o oscilador de Hopf como
modelos da dinâmica interna de cada célula para a parte rítmica. A parte discreta é
modelada por um sistema inspirado no modelo VITE. Medem-se a amplitude e a
frequência de dois passos locomotores para variação do parâmetro g, no intervalo [-5;5].
Consideram-se duas formas distintas de incluir a parte discreta na parte rítmica: (a) como
um (a.1) offset ou (a.2) somada nas expressões que modelam a parte rítmica, e (b) somada
ao sinal da parte rítmica antes de ser enviado às articulações do robô. No caso (a.1),
considerando o oscilador de Hopf como dinâmica interna das células, verifica-se que a amplitude e frequência se mantêm constantes para -5
Resumo:
O modelo matemático de um sistema real permite o conhecimento do seu comportamento dinâmico e é geralmente utilizado em problemas de engenharia. Por vezes os parâmetros utilizados pelo modelo são desconhecidos ou imprecisos. O envelhecimento e o desgaste do material são fatores a ter em conta pois podem causar alterações no comportamento do sistema real, podendo ser necessário efetuar uma nova estimação dos seus parâmetros. Para resolver este problema é utilizado o software desenvolvido pela empresa MathWorks, nomeadamente, o Matlab e o Simulink, em conjunto com a plataforma Arduíno cujo Hardware é open-source. A partir de dados obtidos do sistema real será aplicado um Ajuste de curvas (Curve Fitting) pelo Método dos Mínimos Quadrados de forma a aproximar o modelo simulado ao modelo do sistema real. O sistema desenvolvido permite a obtenção de novos valores dos parâmetros, de uma forma simples e eficaz, com vista a uma melhor aproximação do sistema real em estudo. A solução encontrada é validada com recurso a diferentes sinais de entrada aplicados ao sistema e os seus resultados comparados com os resultados do novo modelo obtido. O desempenho da solução encontrada é avaliado através do método das somas quadráticas dos erros entre resultados obtidos através de simulação e resultados obtidos experimentalmente do sistema real.
Dimensão do sector público e crescimento económico: uma relação não linear na União Europeia dos 15?
Resumo:
Os Estados-Membros da União Europeia têm tido a preocupação de reduzirem a dimensão da Administração Pública na economia, a par de a tornar muito mais eficiente de forma a promover o crescimento económico. Neste artigo analisam-se as relações entre a despesa pública e o crescimento económico em 14 Estados-Membros da União Europeia dos 15, com o objectivo de determinar a dimensão óptima das Administrações Públicas, tendo por base teórica a Curva de Armey. Os resultados, para o período 1965-2007, sugerem uma dimensão do sector público maximizadora do crescimento económico de 47,37% e 22,17% do PIB, quando avaliada pelas despesas públicas totais e o consumo público, respectivamente.
Resumo:
In this paper we introduce a formation control loop that maximizes the performance of the cooperative perception of a tracked target by a team of mobile robots, while maintaining the team in formation, with a dynamically adjustable geometry which is a function of the quality of the target perception by the team. In the formation control loop, the controller module is a distributed non-linear model predictive controller and the estimator module fuses local estimates of the target state, obtained by a particle filter at each robot. The two modules and their integration are described in detail, including a real-time database associated to a wireless communication protocol that facilitates the exchange of state data while reducing collisions among team members. Simulation and real robot results for indoor and outdoor teams of different robots are presented. The results highlight how our method successfully enables a team of homogeneous robots to minimize the total uncertainty of the tracked target cooperative estimate while complying with performance criteria such as keeping a pre-set distance between the teammates and the target, avoiding collisions with teammates and/or surrounding obstacles.
Resumo:
In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.
Resumo:
In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.
Resumo:
The purpose of this work is to present an algorithm to solve nonlinear constrained optimization problems, using the filter method with the inexact restoration (IR) approach. In the IR approach two independent phases are performed in each iteration—the feasibility and the optimality phases. The first one directs the iterative process into the feasible region, i.e. finds one point with less constraints violation. The optimality phase starts from this point and its goal is to optimize the objective function into the satisfied constraints space. To evaluate the solution approximations in each iteration a scheme based on the filter method is used in both phases of the algorithm. This method replaces the merit functions that are based on penalty schemes, avoiding the related difficulties such as the penalty parameter estimation and the non-differentiability of some of them. The filter method is implemented in the context of the line search globalization technique. A set of more than two hundred AMPL test problems is solved. The algorithm developed is compared with LOQO and NPSOL software packages.