4 resultados para Music Recommender Systems

em Instituto Politécnico do Porto, Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many current e-commerce systems provide personalization when their content is shown to users. In this sense, recommender systems make personalized suggestions and provide information of items available in the system. Nowadays, there is a vast amount of methods, including data mining techniques that can be employed for personalization in recommender systems. However, these methods are still quite vulnerable to some limitations and shortcomings related to recommender environment. In order to deal with some of them, in this work we implement a recommendation methodology in a recommender system for tourism, where classification based on association is applied. Classification based on association methods, also named associative classification methods, consist of an alternative data mining technique, which combines concepts from classification and association in order to allow association rules to be employed in a prediction context. The proposed methodology was evaluated in some case studies, where we could verify that it is able to shorten limitations presented in recommender systems and to enhance recommendation quality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O sector do turismo é uma área francamente em crescimento em Portugal e que tem desenvolvido a sua divulgação e estratégia de marketing. Contudo, apenas se prende com indicadores de desempenho e de oferta instalada (número de quartos, hotéis, voos, estadias), deixando os indicadores estatísticos em segundo plano. De acordo com o “ Travel & tourism Competitiveness Report 2013”, do World Economic Forum, classifica Portugal em 72º lugar no que respeita à qualidade e cobertura da informação estatística, disponível para o sector do Turismo. Refira-se que Espanha ocupa o 3º lugar. Uma estratégia de mercado, sem base analítica, que sustente um quadro de orientações específico e objetivo, com relevante conhecimento dos mercados alvo, dificilmente é compreensível ou até mesmo materializável. A implementação de uma estrutura de Business Intelligence que permita a realização de um levantamento e tratamento de dados que possibilite relacionar e sustentar os resultados obtidos no sector do turismo revela-se fundamental e crucial, para que sejam criadas estratégias de mercado. Essas estratégias são realizadas a partir da informação dos turistas que nos visitam, e dos potenciais turistas, para que possam ser cativados no futuro. A análise das características e dos padrões comportamentais dos turistas permite definir perfis distintos e assim detetar as tendências de mercado, de forma a promover a oferta dos produtos e serviços mais adequados. O conhecimento obtido permite, por um lado criar e disponibilizar os produtos mais atrativos para oferecer aos turistas e por outro informá-los, de uma forma direcionada, da existência desses produtos. Assim, a associação de uma recomendação personalizada que, com base no conhecimento de perfis do turista proceda ao aconselhamento dos melhores produtos, revela-se como uma ferramenta essencial na captação e expansão de mercado.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nos últimos anos, a nossa sociedade sofreu alterações significativas ao nível tecnológico que têm vindo a modificar o quotidiano do cidadão e transportaram para a palma da mão um conjunto significativo de tarefas até há poucos anos impensáveis. Atualmente, torna-se possível realizar as mais simples tarefas como, a título de exemplo, efetuar um cálculo matemático, tirar fotografias ou registar numa agenda um compromisso, ou tarefas mais complexas, como por exemplo, escrever ou editar um documento, trabalhar numa folha de cálculo ou enviar um e-mail com um anexo, isto tudo com o recurso a um simples dispositivo móvel, conhecido como smartphone ou tablet. Apesar de existirem diversos tipos de apps que seriam um bom auxílio para o aumento da produtividade dos utilizadores de dispositivos móveis Android, nem todos têm conhecimento das mesmas, pelo que é importante que os utilizadores tenham conhecimentos das vantagens da utilização destes recursos e de tudo o que podem realizar com os seus dispositivos com o objetivo de aumentar a sua produtividade profissional ou pessoal. O presente estudo pretende contribuir para uma análise sobre a potencial utilização das novas tecnologias, mais propriamente estudando e recomendando apps de produtividade. Com este intuito foi criada uma app de recomendação de aplicações de produtividade com recurso a um método de sistemas de recomendação. São apresentados os resultados e as conclusões, com recurso a opiniões de potenciais utilizadores.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nearest neighbour collaborative filtering (NNCF) algorithms are commonly used in multimedia recommender systems to suggest media items based on the ratings of users with similar preferences. However, the prediction accuracy of NNCF algorithms is affected by the reduced number of items – the subset of items co-rated by both users – typically used to determine the similarity between pairs of users. In this paper, we propose a different approach, which substantially enhances the accuracy of the neighbour selection process – a user-based CF (UbCF) with semantic neighbour discovery (SND). Our neighbour discovery methodology, which assesses pairs of users by taking into account all the items rated at least by one of the users instead of just the set of co-rated items, semantically enriches this enlarged set of items using linked data and, finally, applies the Collinearity and Proximity Similarity metric (CPS), which combines the cosine similarity with Chebyschev distance dissimilarity metric. We tested the proposed SND against the Pearson Correlation neighbour discovery algorithm off-line, using the HetRec data set, and the results show a clear improvement in terms of accuracy and execution time for the predicted recommendations.