3 resultados para Moral thinking

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes the main research results in a new methodology, in which the stages and strategies of the technology integration process are identified and described. A set of principles and recommendations are therefore presented. The MIPO model described in this paper is a result of the effort made regarding the understanding of the main success features of good practices, in the web environment, integrated in the information systems/information technology context. The initial model has been created, based on experiences and literature review. After that, it was tested in the information and technology system units at higher school and also adapted as a result of four cycles of an actionresearch work combined with a case study research. The information, concepts and procedures presented here give support to teachers and instructors, instructional designers and planning teams – anyone who wants to develop effective b‐learning instructions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In almost all industrialized countries, the energy sector has suffered a severe restructuring that originated a greater complexity in market players’ interactions. The complexity that these changes brought made way for the creation of decision support tools that facilitate the study and understanding of these markets. MASCEM – “Multiagent Simulator for Competitive Electricity Markets” arose in this context providing a framework for evaluating new rules, new behaviour, and new participants in deregulated electricity markets. MASCEM uses game theory, machine learning techniques, scenario analysis and optimisation techniques to model market agents and to provide them with decision-support. ALBidS is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This tool’s goal is to force the thinker to move outside his habitual thinking style. It was developed to be used mainly at meetings in order to “run better meetings, make faster decisions”. This dissertation presents a study about the applicability of the Six Thinking Hats technique in Decision Support Systems, particularly with the multiagent paradigm like the MASCEM simulator. As such this work’s proposal is of a new agent, a meta-learner based on STH technique that organizes several different ALBidS’ strategies and combines the distinct answers into a single one that, expectedly, out-performs any of them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy sector has suffered a significant restructuring that has increased the complexity in electricity market players' interactions. The complexity that these changes brought requires the creation of decision support tools to facilitate the study and understanding of these markets. The Multiagent Simulator of Competitive Electricity Markets (MASCEM) arose in this context, providing a simulation framework for deregulated electricity markets. The Adaptive Learning strategic Bidding System (ALBidS) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM, ALBidS considers several different strategic methodologies based on highly distinct approaches. Six Thinking Hats (STH) is a powerful technique used to look at decisions from different perspectives, forcing the thinker to move outside its usual way of thinking. This paper aims to complement the ALBidS strategies by combining them and taking advantage of their different perspectives through the use of the STH group decision technique. The combination of ALBidS' strategies is performed through the application of a genetic algorithm, resulting in an evolutionary learning approach.