14 resultados para Moore-Penrose generalized inverse
em Instituto Politécnico do Porto, Portugal
Resumo:
Redundant manipulators allow the trajectory optimization, the obstacle avoidance, and the resolution of singularities. For this type of manipulators, the kinematic control algorithms adopt generalized inverse matrices that may lead to unpredictable responses. Motivated by these problems this paper studies the complexity revealed by the trajectory planning scheme when controlling redundant manipulators. The results reveal fundamental properties of the chaotic phenomena and give a deeper insight towards the development of superior trajectory control algorithms.
Resumo:
Nonlinear Dynamics, chaos, Control, and Their Applications to Engineering Sciences: Vol. 6 - Applications of nonlinear phenomena
Resumo:
Redundant manipulators have some advantages when compared with classical arms because they allow the trajectory optimization, both on the free space and on the presence of abstacles, and the resolution of singularities. For this type of manipulators, several kinetic algorithms adopt generalized inverse matrices. In this line of thought, the generalized inverse control scheme is tested through several experiments that reveal the difficulties that often arise. Motivated by theseproblems this paper presents a new method that ptimizes the manipulability through a least squre polynomialapproximation to determine the joints positions. Moreover, the article studies influence on the dynamics, when controlling redundant and hyper-redundant manipulators. The experiment confirm the superior performance of the proposed algorithm for redundant and hyper-redundant manipulators, revealing several fundamental properties of the chaotic phenomena, and gives a deeper insight towards the future development of superior trajectory control algorithms.
Resumo:
The paper revisits the convolution operator and addresses its generalization in the perspective of fractional calculus. Two examples demonstrate the feasibility of the concept using analytical expressions and the inverse Fourier transform, for real and complex orders. Two approximate calculation schemes in the time domain are also tested.
Resumo:
Composition is a practice of key importance in software engineering. When real-time applications are composed it is necessary that their timing properties (such as meeting the deadlines) are guaranteed. The composition is performed by establishing an interface between the application and the physical platform. Such an interface does typically contain information about the amount of computing capacity needed by the application. In multiprocessor platforms, the interface should also present information about the degree of parallelism. Recently there have been quite a few interface proposals. However, they are either too complex to be handled or too pessimistic.In this paper we propose the Generalized Multiprocessor Periodic Resource model (GMPR) that is strictly superior to the MPR model without requiring a too detailed description. We describe a method to generate the interface from the application specification. All these methods have been implemented in Matlab routines that are publicly available.
Resumo:
A new operationalmatrix of fractional integration of arbitrary order for generalized Laguerre polynomials is derived.The fractional integration is described in the Riemann-Liouville sense.This operational matrix is applied together with generalized Laguerre tau method for solving general linearmultitermfractional differential equations (FDEs).Themethod has the advantage of obtaining the solution in terms of the generalized Laguerre parameter. In addition, only a small dimension of generalized Laguerre operational matrix is needed to obtain a satisfactory result. Illustrative examples reveal that the proposedmethod is very effective and convenient for linear multiterm FDEs on a semi-infinite interval.
Resumo:
An approach for the analysis of uncertainty propagation in reliability-based design optimization of composite laminate structures is presented. Using the Uniform Design Method (UDM), a set of design points is generated over a domain centered on the mean reference values of the random variables. A methodology based on inverse optimal design of composite structures to achieve a specified reliability level is proposed, and the corresponding maximum load is outlined as a function of ply angle. Using the generated UDM design points as input/output patterns, an Artificial Neural Network (ANN) is developed based on an evolutionary learning process. Then, a Monte Carlo simulation using ANN development is performed to simulate the behavior of the critical Tsai number, structural reliability index, and their relative sensitivities as a function of the ply angle of laminates. The results are generated for uniformly distributed random variables on a domain centered on mean values. The statistical analysis of the results enables the study of the variability of the reliability index and its sensitivity relative to the ply angle. Numerical examples showing the utility of the approach for robust design of angle-ply laminates are presented.
Resumo:
Consider a multihop network comprising Ethernet switches. The traffic is described with flows and each flow is characterized by its source node, its destination node, its route and parameters in the generalized multiframe model. Output queues on Ethernet switches are scheduled by static-priority scheduling and tasks executing on the processor in an Ethernet switch are scheduled by stride scheduling. We present schedulability analysis for this setting.
Resumo:
This paper addresses the calculation of fractional order expressions through rational fractions. The article starts by analyzing the techniques adopted in the continuous to discrete time conversion. The problem is re-evaluated in an optimization perspective by tacking advantage of the degree of freedom provided by the generalized mean formula. The results demonstrate the superior performance of the new algorithm.
Resumo:
This paper formulates a novel expression for entropy inspired in the properties of Fractional Calculus. The characteristics of the generalized fractional entropy are tested both in standard probability distributions and real world data series. The results reveal that tuning the fractional order allow an high sensitivity to the signal evolution, which is useful in describing the dynamics of complex systems. The concepts are also extended to relative distances and tested with several sets of data, confirming the goodness of the generalization.
Resumo:
This paper formulates a novel expression for entropy inspired in the properties of Fractional Calculus. The characteristics of the generalized fractional entropy are tested both in standard probability distributions and real world data series. The results reveal that tuning the fractional order allow an high sensitivity to the signal evolution, which is useful in describing the dynamics of complex systems. The concepts are also extended to relative distances and tested with several sets of data, confirming the goodness of the generalization.
Resumo:
23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2015). 4 to 6, Mar, 2015. Turku, Finland.
Resumo:
The adhesive bonding technique enables both weight and complexity reduction in structures that require some joining technique to be used on account of fabrication/component shape issues. Because of this, adhesive bonding is also one of the main repair methods for metal and composite structures by the strap and scarf configurations. The availability of strength prediction techniques for adhesive joints is essential for their generalized application and it can rely on different approaches, such as mechanics of materials, conventional fracture mechanics or damage mechanics. These two last techniques depend on the measurement of the fracture toughness (GC) of materials. Within the framework of damage mechanics, a valid option is the use of Cohesive Zone Modelling (CZM) coupled with Finite Element (FE) analyses. In this work, CZM laws for adhesive joints considering three adhesives with varying ductility were estimated. The End-Notched Flexure (ENF) test geometry was selected based on overall test simplicity and results accuracy. The adhesives Araldite® AV138, Araldite® 2015 and Sikaforce® 7752 were studied between high-strength aluminium adherends. Estimation of the CZM laws was carried out by an inverse methodology based on a curve fitting procedure, which enabled a precise estimation of the adhesive joints’ behaviour. The work allowed to conclude that a unique set of shear fracture toughness (GIIC) and shear cohesive strength (ts0) exists for each specimen that accurately reproduces the adhesive layer’ behaviour. With this information, the accurate strength prediction of adhesive joints in shear is made possible by CZM.