9 resultados para Monte-Carlo-Simulation
em Instituto Politécnico do Porto, Portugal
Resumo:
This paper proposes a new methodology to reduce the probability of occurring states that cause load curtailment, while minimizing the involved costs to achieve that reduction. The methodology is supported by a hybrid method based on Fuzzy Set and Monte Carlo Simulation to catch both randomness and fuzziness of component outage parameters of transmission power system. The novelty of this research work consists in proposing two fundamentals approaches: 1) a global steady approach which deals with building the model of a faulted transmission power system aiming at minimizing the unavailability corresponding to each faulted component in transmission power system. This, results in the minimal global cost investment for the faulted components in a system states sample of the transmission network; 2) a dynamic iterative approach that checks individually the investment’s effect on the transmission network. A case study using the Reliability Test System (RTS) 1996 IEEE 24 Buses is presented to illustrate in detail the application of the proposed methodology.
Fuzzy Monte Carlo mathematical model for load curtailment minimization in transmission power systems
Resumo:
This paper presents a methodology which is based on statistical failure and repair data of the transmission power system components and uses fuzzyprobabilistic modeling for system component outage parameters. Using statistical records allows developing the fuzzy membership functions of system component outage parameters. The proposed hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. A network contingency analysis to identify any overloading or voltage violation in the network is performed once obtained the system states by Monte Carlo simulation. This is followed by a remedial action algorithm, based on optimal power flow, to reschedule generations and alleviate constraint violations and, at the same time, to avoid any load curtailment, if possible, or, otherwise, to minimize the total load curtailment, for the states identified by the contingency analysis. In order to illustrate the application of the proposed methodology to a practical case, the paper will include a case study for the Reliability Test System (RTS) 1996 IEEE 24 BUS.
Resumo:
This paper present a methodology to choose the distribution networks reconfiguration that presents the lower power losses. The proposed methodology is based on statistical failure and repair data of the distribution power system components and uses fuzzy-probabilistic modeling for system component outage parameters. The proposed hybrid method using fuzzy sets and Monte Carlo simulation based on the fuzzyprobabilistic models allows catching both randomness and fuzziness of component outage parameters. A logic programming algorithm is applied, once obtained the system states by Monte Carlo Simulation, to get all possible reconfigurations for each system state. To evaluate the line flows and bus voltages and to identify if there is any overloading, and/or voltage violation an AC load flow has been applied to select the feasible reconfiguration with lower power losses. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 115 buses distribution network.
Resumo:
The problem of uncertainty propagation in composite laminate structures is studied. An approach based on the optimal design of composite structures to achieve a target reliability level is proposed. Using the Uniform Design Method (UDM), a set of design points is generated over a design domain centred at mean values of random variables, aimed at studying the space variability. The most critical Tsai number, the structural reliability index and the sensitivities are obtained for each UDM design point, using the maximum load obtained from optimal design search. Using the UDM design points as input/output patterns, an Artificial Neural Network (ANN) is developed based on supervised evolutionary learning. Finally, using the developed ANN a Monte Carlo simulation procedure is implemented and the variability of the structural response based on global sensitivity analysis (GSA) is studied. The GSA is based on the first order Sobol indices and relative sensitivities. An appropriate GSA algorithm aiming to obtain Sobol indices is proposed. The most important sources of uncertainty are identified.
Resumo:
An approach for the analysis of uncertainty propagation in reliability-based design optimization of composite laminate structures is presented. Using the Uniform Design Method (UDM), a set of design points is generated over a domain centered on the mean reference values of the random variables. A methodology based on inverse optimal design of composite structures to achieve a specified reliability level is proposed, and the corresponding maximum load is outlined as a function of ply angle. Using the generated UDM design points as input/output patterns, an Artificial Neural Network (ANN) is developed based on an evolutionary learning process. Then, a Monte Carlo simulation using ANN development is performed to simulate the behavior of the critical Tsai number, structural reliability index, and their relative sensitivities as a function of the ply angle of laminates. The results are generated for uniformly distributed random variables on a domain centered on mean values. The statistical analysis of the results enables the study of the variability of the reliability index and its sensitivity relative to the ply angle. Numerical examples showing the utility of the approach for robust design of angle-ply laminates are presented.
Resumo:
O trabalho apresentado centra-se na determinação dos custos de construção de condutas de pequenos e médios diâmetros em Polietileno de Alta Densidade (PEAD) para saneamento básico, tendo como base a metodologia descrita no livro Custos de Construção e Exploração – Volume 9 da série Gestão de Sistemas de Saneamento Básico, de Lencastre et al. (1994). Esta metodologia descrita no livro já referenciado, nos procedimentos de gestão de obra, e para tal foram estimados custos unitários de diversos conjuntos de trabalhos. Conforme Lencastre et al (1994), “esses conjuntos são referentes a movimentos de terras, tubagens, acessórios e respetivos órgãos de manobra, pavimentações e estaleiro, estando englobado na parte do estaleiro trabalhos acessórios correspondentes à obra.” Os custos foram obtidos analisando vários orçamentos de obras de saneamento, resultantes de concursos públicos de empreitadas recentemente realizados. Com vista a tornar a utilização desta metodologia numa ferramenta eficaz, foram organizadas folhas de cálculo que possibilitam obter estimativas realistas dos custos de execução de determinada obra em fases anteriores ao desenvolvimento do projeto, designadamente numa fase de preparação do plano diretor de um sistema ou numa fase de elaboração de estudos de viabilidade económico-financeiros, isto é, mesmo antes de existir qualquer pré-dimensionamento dos elementos do sistema. Outra técnica implementada para avaliar os dados de entrada foi a “Análise Robusta de Dados”, Pestana (1992). Esta metodologia permitiu analisar os dados mais detalhadamente antes de se formularem hipóteses para desenvolverem a análise de risco. A ideia principal é o exame bastante flexível dos dados, frequentemente antes mesmo de os comparar a um modelo probabilístico. Assim, e para um largo conjunto de dados, esta técnica possibilitou analisar a disparidade dos valores encontrados para os diversos trabalhos referenciados anteriormente. Com os dados recolhidos, e após o seu tratamento, passou-se à aplicação de uma metodologia de Análise de Risco, através da Simulação de Monte Carlo. Esta análise de risco é feita com recurso a uma ferramenta informática da Palisade, o @Risk, disponível no Departamento de Engenharia Civil. Esta técnica de análise quantitativa de risco permite traduzir a incerteza dos dados de entrada, representada através de distribuições probabilísticas que o software disponibiliza. Assim, para por em prática esta metodologia, recorreu-se às folhas de cálculo que foram realizadas seguindo a abordagem proposta em Lencastre et al (1994). A elaboração e a análise dessas estimativas poderão conduzir à tomada de decisões sobre a viabilidade da ou das obras a realizar, nomeadamente no que diz respeito aos aspetos económicos, permitindo uma análise de decisão fundamentada quanto à realização dos investimentos.
Resumo:
Most of distributed generation and smart grid research works are dedicated to network operation parameters studies, reliability, etc. However, many of these works normally uses traditional test systems, for instance, IEEE test systems. This paper proposes voltage magnitude and reliability studies in presence of fault conditions, considering realistic conditions found in countries like Brazil. The methodology considers a hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models and a remedial action algorithm which is based on optimal power flow. To illustrate the application of the proposed method, the paper includes a case study that considers a real 12-bus sub-transmission network.