41 resultados para Mixed-integer nonlinear programming (MINLP)

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the energy management of the isolated operation of small power system, the economic scheduling of the generation units is a crucial problem. Applying right timing can maximize the performance of the supply. The optimal operation of a wind turbine, a solar unit, a fuel cell and a storage battery is searched by a mixed-integer linear programming implemented in General Algebraic Modeling Systems (GAMS). A Virtual Power Producer (VPP) can optimal operate the generation units, assured the good functioning of equipment, including the maintenance, operation cost and the generation measurement and control. A central control at system allows a VPP to manage the optimal generation and their load control. The application of methodology to a real case study in Budapest Tech, demonstrates the effectiveness of this method to solve the optimal isolated dispatch of the DC micro-grid renewable energy park. The problem has been converged in 0.09 s and 30 iterations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper proposes a methodology to increase the probability of delivering power to any load point by identifying new investments in distribution energy systems. The proposed methodology is based on statistical failure and repair data of distribution components and it uses a fuzzy-probabilistic modeling for the components outage parameters. The fuzzy membership functions of the outage parameters of each component are based on statistical records. A mixed integer nonlinear programming optimization model is developed in order to identify the adequate investments in distribution energy system components which allow increasing the probability of delivering power to any customer in the distribution system at the minimum possible cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 180 bus distribution network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a simulated annealing (SA) approach to address energy resources management from the point of view of a virtual power player (VPP) operating in a smart grid. Distributed generation, demand response, and gridable vehicles are intelligently managed on a multiperiod basis according to V2G user´s profiles and requirements. Apart from using the aggregated resources, the VPP can also purchase additional energy from a set of external suppliers. The paper includes a case study for a 33 bus distribution network with 66 generators, 32 loads, and 1000 gridable vehicles. The results of the SA approach are compared with a methodology based on mixed-integer nonlinear programming. A variation of this method, using ac load flow, is also used and the results are compared with the SA solution using network simulation. The proposed SA approach proved to be able to obtain good solutions in low execution times, providing VPPs with suitable decision support for the management of a large number of distributed resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ancillary services represent a good business opportunity that must be considered by market players. This paper presents a new methodology for ancillary services market dispatch. The method considers the bids submitted to the market and includes a market clearing mechanism based on deterministic optimization. An Artificial Neural Network is used for day-ahead prediction of Regulation Down, regulation-up, Spin Reserve and Non-Spin Reserve requirements. Two test cases based on California Independent System Operator data concerning dispatch of Regulation Down, Regulation Up, Spin Reserve and Non-Spin Reserve services are included in this paper to illustrate the application of the proposed method: (1) dispatch considering simple bids; (2) dispatch considering complex bids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finding the optimal value for a problem is usual in many areas of knowledge where in many cases it is needed to solve Nonlinear Optimization Problems. For some of those problems it is not possible to determine the expression for its objective function and/or its constraints, they are the result of experimental procedures, might be non-smooth, among other reasons. To solve such problems it was implemented an API contained methods to solve both constrained and unconstrained problems. This API was developed to be used either locally on the computer where the application is being executed or remotely on a server. To obtain the maximum flexibility both from the programmers’ and users’ points of view, problems can be defined as a Java class (because this API was developed in Java) or as a simple text input that is sent to the API. For this last one to be possible it was also implemented on the API an expression evaluator. One of the drawbacks of this expression evaluator is that it is slower than the Java native code. In this paper it is presented a solution that combines both options: the problem can be expressed at run-time as a string of chars that are converted to Java code, compiled and loaded dynamically. To wide the target audience of the API, this new expression evaluator is also compatible with the AMPL format.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, power systems have experienced many changes in their paradigm. The introduction of new players in the management of distributed generation leads to the decentralization of control and decision-making, so that each player is able to play in the market environment. In the new context, it will be very relevant that aggregator players allow midsize, small and micro players to act in a competitive environment. In order to achieve their objectives, virtual power players and single players are required to optimize their energy resource management process. To achieve this, it is essential to have financial resources capable of providing access to appropriate decision support tools. As small players have difficulties in having access to such tools, it is necessary that these players can benefit from alternative methodologies to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), and intended to support smaller players. In this case the present methodology uses a training set that is created using energy resource scheduling solutions obtained using a mixed-integer linear programming (MIP) approach as the reference optimization methodology. The trained network is used to obtain locational marginal prices in a distribution network. The main goal of the paper is to verify the accuracy of the ANN based approach. Moreover, the use of a single ANN is compared with the use of two or more ANN to forecast the locational marginal price.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a computationally efficient methodology for the optimal location and sizing of static and switched shunt capacitors in large distribution systems. The problem is formulated as the maximization of the savings produced by the reduction in energy losses and the avoided costs due to investment deferral in the expansion of the network. The proposed method selects the nodes to be compensated, as well as the optimal capacitor ratings and their operational characteristics, i.e. fixed or switched. After an appropriate linearization, the optimization problem was formulated as a large-scale mixed-integer linear problem, suitable for being solved by means of a widespread commercial package. Results of the proposed optimizing method are compared with another recent methodology reported in the literature using two test cases: a 15-bus and a 33-bus distribution network. For the both cases tested, the proposed methodology delivers better solutions indicated by higher loss savings, which are achieved with lower amounts of capacitive compensation. The proposed method has also been applied for compensating to an actual large distribution network served by AES-Venezuela in the metropolitan area of Caracas. A convergence time of about 4 seconds after 22298 iterations demonstrates the ability of the proposed methodology for efficiently handling large-scale compensation problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The management of energy resources for islanded operation is of crucial importance for the successful use of renewable energy sources. A Virtual Power Producer (VPP) can optimally operate the resources taking into account the maintenance, operation and load control considering all the involved cost. This paper presents the methodology approach to formulate and solve the problem of determining the optimal resource allocation applied to a real case study in Budapest Tech’s. The problem is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The problem has also been solved by Evolutionary Particle Swarm Optimization (EPSO). The obtained results are presented and compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the energy management of a small power system, the scheduling of the generation units is a crucial problem for which adequate methodologies can maximize the performance of the energy supply. This paper proposes an innovative methodology for distributed energy resources management. The optimal operation of distributed generation, demand response and storage resources is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The paper deals with a vision for the grids of the future, focusing on conceptual and operational aspects of electrical grids characterized by an intensive penetration of DG, in the scope of competitive environments and using artificial intelligence methodologies to attain the envisaged goals. These concepts are implemented in a computational framework which includes both grid and market simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smart grids with an intensive penetration of distributed energy resources will play an important role in future power system scenarios. The intermittent nature of renewable energy sources brings new challenges, requiring an efficient management of those sources. Additional storage resources can be beneficially used to address this problem; the massive use of electric vehicles, particularly of vehicle-to-grid (usually referred as gridable vehicles or V2G), becomes a very relevant issue. This paper addresses the impact of Electric Vehicles (EVs) in system operation costs and in power demand curve for a distribution network with large penetration of Distributed Generation (DG) units. An efficient management methodology for EVs charging and discharging is proposed, considering a multi-objective optimization problem. The main goals of the proposed methodology are: to minimize the system operation costs and to minimize the difference between the minimum and maximum system demand (leveling the power demand curve). The proposed methodology perform the day-ahead scheduling of distributed energy resources in a distribution network with high penetration of DG and a large number of electric vehicles. It is used a 32-bus distribution network in the case study section considering different scenarios of EVs penetration to analyze their impact in the network and in the other energy resources management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Em Angola, apenas cerca de 30% da população tem acesso à energia elétrica, nível que decresce para valores inferiores a 10% em zonas rurais mais remotas. Este problema é agravado pelo facto de, na maioria dos casos, as infraestruturas existentes se encontrarem danificadas ou não acompanharem o desenvolvimento da região. Em particular na capital angolana, Luanda que, sendo a menor província de Angola, é a que regista atualmente a maior densidade populacional. Com uma população de cerca de 5 milhões de habitantes, não só há frequentemente problemas relacionados com a falha do fornecimento de energia elétrica como há ainda uma percentagem considerável de municípios onde a rede elétrica ainda nem sequer chegou. O governo de Angola, no seu esforço de crescimento e aproveitamento das suas enormes potencialidades, definiu o setor energético como um dos fatores críticos para o desenvolvimento sustentável do país, tendo assumido que este é um dos eixos prioritários até 2016. Existem objetivos claros quanto à reabilitação e expansão das infraestruturas do setor elétrico, aumentando a capacidade instalada do país e criando uma rede nacional adequada, com o intuito não só de melhorar a qualidade e fiabilidade da rede já existente como de a aumentar. Este trabalho de dissertação consistiu no levantamento de dados reais relativamente à rede de distribuição de energia elétrica de Luanda, na análise e planeamento do que é mais premente fazer relativamente à sua expansão, na escolha dos locais onde é viável localizar novas subestações, na modelação adequada do problema real e na proposta de uma solução ótima para a expansão da rede existente. Depois de analisados diferentes modelos matemáticos aplicados ao problema de expansão de redes de distribuição de energia elétrica encontrados na literatura, optou-se por um modelo de programação linear inteira mista (PLIM) que se mostrou adequado. Desenvolvido o modelo do problema, o mesmo foi resolvido por recurso a software de otimização Analytic Solver e CPLEX. Como forma de validação dos resultados obtidos, foi implementada a solução de rede no simulador PowerWorld 8.0 OPF, software este que permite a simulação da operação do sistema de trânsito de potências.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tipicamente as redes elétricas de distribuição apresentam uma topologia parcialmente malhada e são exploradas radialmente. A topologia radial é obtida através da abertura das malhas nos locais que otimizam o ponto de operação da rede, através da instalação de aparelhos de corte que operam normalmente abertos. Para além de manterem a topologia radial, estes equipamentos possibilitam também a transferência de cargas entre saídas, aquando da ocorrência de defeitos. As saídas radiais são ainda dotadas de aparelhos de corte que operam normalmente fechados, estes têm como objetivo maximizar a fiabilidade e isolar defeitos, minimizando a área afetada pelos mesmos. Assim, na presente dissertação são desenvolvidos dois algoritmos determinísticos para a localização ótima de aparelhos de corte normalmente abertos e fechados, minimizando a potência ativa de perdas e o custo da energia não distribuída. O algoritmo de localização de aparelhos de corte normalmente abertos visa encontrar a topologia radial ótima que minimiza a potência ativa de perdas. O método é desenvolvido em ambiente Matlab – Tomlab, e é formulado como um problema de programação quadrática inteira mista. A topologia radial ótima é garantida através do cálculo de um trânsito de potências ótimo baseado no modelo DC. A função objetivo é dada pelas perdas por efeito de Joule. Por outro lado o problema é restringido pela primeira lei de Kirchhoff, limites de geração das subestações, limites térmicos dos condutores, trânsito de potência unidirecional e pela condição de radialidade. Os aparelhos de corte normalmente fechados são localizados ao longo das saídas radiais obtidas pelo anterior algoritmo, e permite minimizar o custo da energia não distribuída. No limite é possível localizar um aparelho de corte normalmente fechado em todas as linhas de uma rede de distribuição, sendo esta a solução que minimiza a energia não distribuída. No entanto, tendo em conta que a cada aparelho de corte está associado um investimento, é fundamental encontrar um equilíbrio entre a melhoria de fiabilidade e o investimento. Desta forma, o algoritmo desenvolvido avalia os benefícios obtidos com a instalação de aparelhos de corte normalmente fechados, e retorna o número e a localização dos mesmo que minimiza o custo da energia não distribuída. Os métodos apresentados são testados em duas redes de distribuição reais, exploradas com um nível de tensão de 15 kV e 30 kV, respetivamente. A primeira rede é localizada no distrito do Porto e é caraterizada por uma topologia mista e urbana. A segunda rede é localizada no distrito de Bragança e é caracterizada por uma topologia maioritariamente aérea e rural.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction of Electric Vehicles (EVs) together with the implementation of smart grids will raise new challenges to power system operators. This paper proposes a demand response program for electric vehicle users which provides the network operator with another useful resource that consists in reducing vehicles charging necessities. This demand response program enables vehicle users to get some profit by agreeing to reduce their travel necessities and minimum battery level requirements on a given period. To support network operator actions, the amount of demand response usage can be estimated using data mining techniques applied to a database containing a large set of operation scenarios. The paper includes a case study based on simulated operation scenarios that consider different operation conditions, e.g. available renewable generation, and considering a diversity of distributed resources and electric vehicles with vehicle-to-grid capacity and demand response capacity in a 33 bus distribution network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problem of energy resources management using modern metaheuristics approaches, namely Particle Swarm Optimization (PSO), New Particle Swarm Optimization (NPSO) and Evolutionary Particle Swarm Optimization (EPSO). The addressed problem in this research paper is intended for aggregators’ use operating in a smart grid context, dealing with Distributed Generation (DG), and gridable vehicles intelligently managed on a multi-period basis according to its users’ profiles and requirements. The aggregator can also purchase additional energy from external suppliers. The paper includes a case study considering a 30 kV distribution network with one substation, 180 buses and 90 load points. The distribution network in the case study considers intense penetration of DG, including 116 units from several technologies, and one external supplier. A scenario of 6000 EVs for the given network is simulated during 24 periods, corresponding to one day. The results of the application of the PSO approaches to this case study are discussed deep in the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed Energy Resources (DER) scheduling in smart grids presents a new challenge to system operators. The increase of new resources, such as storage systems and demand response programs, results in additional computational efforts for optimization problems. On the other hand, since natural resources, such as wind and sun, can only be precisely forecasted with small anticipation, short-term scheduling is especially relevant requiring a very good performance on large dimension problems. Traditional techniques such as Mixed-Integer Non-Linear Programming (MINLP) do not cope well with large scale problems. This type of problems can be appropriately addressed by metaheuristics approaches. This paper proposes a new methodology called Signaled Particle Swarm Optimization (SiPSO) to address the energy resources management problem in the scope of smart grids, with intensive use of DER. The proposed methodology’s performance is illustrated by a case study with 99 distributed generators, 208 loads, and 27 storage units. The results are compared with those obtained in other methodologies, namely MINLP, Genetic Algorithm, original Particle Swarm Optimization (PSO), Evolutionary PSO, and New PSO. SiPSO performance is superior to the other tested PSO variants, demonstrating its adequacy to solve large dimension problems which require a decision in a short period of time.