4 resultados para Meeting Minutes

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims to present a multi-agent model for a simulation, whose goal is to help one specific participant of multi-criteria group decision making process.This model has five main intervenient types: the human participant, who is using the simulation and argumentation support system; the participant agents, one associated to the human participant and the others simulating the others human members of the decision meeting group; the directory agent; the proposal agents, representing the different alternatives for a decision (the alternatives are evaluated based on criteria); and the voting agent responsiblefor all voting machanisms.At this stage it is proposed a two phse algorithm. In the first phase each participantagent makes his own evaluation of the proposals under discussion, and the voting agent proposes a simulation of a voting process.In the second phase, after the dissemination of the voting results,each one ofthe partcipan agents will argue to convince the others to choose one of the possible alternatives. The arguments used to convince a specific participant are dependent on agent knowledge about that participant. This two-phase algorithm is applied iteratively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In almost all industrialized countries, the energy sector has suffered a severe restructuring that originated a greater complexity in market players’ interactions. The complexity that these changes brought made way for the creation of decision support tools that facilitate the study and understanding of these markets. MASCEM – “Multiagent Simulator for Competitive Electricity Markets” arose in this context providing a framework for evaluating new rules, new behaviour, and new participants in deregulated electricity markets. MASCEM uses game theory, machine learning techniques, scenario analysis and optimisation techniques to model market agents and to provide them with decision-support. ALBidS is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This tool’s goal is to force the thinker to move outside his habitual thinking style. It was developed to be used mainly at meetings in order to “run better meetings, make faster decisions”. This dissertation presents a study about the applicability of the Six Thinking Hats technique in Decision Support Systems, particularly with the multiagent paradigm like the MASCEM simulator. As such this work’s proposal is of a new agent, a meta-learner based on STH technique that organizes several different ALBidS’ strategies and combines the distinct answers into a single one that, expectedly, out-performs any of them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity markets are complex environments comprising several negotiation mechanisms. MASCEM (Multi- Agent System for Competitive Electricity Markets) is a simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. ALBidS (Adaptive Learning Strategic Bidding System) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This paper aims to complement ALBidS strategies usage by MASCEM players, providing, through the Six Thinking Hats group decision technique, a means to combine them and take advantages from their different perspectives. The combination of the different proposals resulting from ALBidS’ strategies is performed through the application of a Genetic Algorithm, resulting in an evolutionary learning approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Public health organizations recommend that preschool-aged children accumulate at least 3 h of physical activity (PA) daily. Objective monitoring using pedometers offers an opportunity to measure preschooler's PA and assess compliance with this recommendation. The purpose of this study was to derive step-based recommendations consistent with the 3 h PA recommendation for preschool-aged children. Method The study sample comprised 916 preschool-aged children, aged 3 to 6 years (mean age = 5.0 ± 0.8 years). Children were recruited from kindergartens located in Portugal, between 2009 and 2013. Children wore an ActiGraph GT1M accelerometer that measured PA intensity and steps per day simultaneously over a 7-day monitoring period. Receiver operating characteristic (ROC) curve analysis was used to identify the daily step count threshold associated with meeting the daily 3 hour PA recommendation. Results A significant correlation was observed between minutes of total PA and steps per day (r = 0.76, p < 0.001). The optimal step count for ≥ 3 h of total PA was 9099 steps per day (sensitivity (90%) and specificity (66%)) with area under the ROC curve = 0.86 (95% CI: 0.84 to 0.88). Conclusion Preschool-aged children who accumulate less than 9000 steps per day may be considered Insufficiently Active.