19 resultados para Mechanical vibration
em Instituto Politécnico do Porto, Portugal
Resumo:
Over the last two decades the research and development of legged locomotion robots has grown steadily. Legged systems present major advantages when compared with traditional vehicles, because they allow locomotion in inaccessible terrain to vehicles with wheels and tracks. However, the robustness of legged robots, and especially their energy consumption, among other aspects, still lag behind mechanisms that use wheels and tracks. Therefore, in the present state of development, there are several aspects that need to be improved and optimized. Keeping these ideas in mind, this paper presents the review of the literature of different methods adopted for the optimization of the structure and locomotion gaits of walking robots. Among the distinct possible strategies often used for these tasks are referred approaches such as the mimicking of biological animals, the use of evolutionary schemes to find the optimal parameters and structures, the adoption of sound mechanical design rules, and the optimization of power-based indexes.
Resumo:
The purpose of this study is to analyse the interlimb relation and the influence of mechanical energy on metabolic energy expenditure during gait. In total, 22 subjects were monitored as to electromyographic activity, ground reaction forces and VO2 consumption (metabolic power) during gait. The results demonstrate a moderate negative correlation between the activity of tibialis anterior, biceps femoris and vastus medialis of the trailing limb during the transition between midstance and double support and that of the leading limb during double support for the same muscles, and between these and gastrocnemius medialis and soleus of the trailing limb during double support. Trailing limb soleus during the transition between mid-stance and double support was positively correlated to leading limb tibialis anterior, vastus medialis and biceps femoris during double support. Also, the trailing limb centre of mass mechanical work was strongly influenced by the leading limbs, although only the mechanical power related to forward progression of both limbs was correlated to metabolic power. These findings demonstrate a consistent interlimb relation in terms of electromyographic activity and centre of mass mechanical work, being the relations occurred in the plane of forward progression the more important to gait energy expenditure.
Resumo:
Titanium Diboride (TiB2) presents high mechanical and physical properties. Some wear studies were also carried out in order to evaluate its tribological properties. One of the most popular wear tests for thin films is the ball-cratering configuration. This work was focused on the study of the tribological properties of TiB2 thin films using micro-abrasion tests and following the BS EN 1071-6: 2007 standard. Due to high hardness usually patented by these films, diamond was selected as abrasive on micro-abrasion tests. Micro-abrasion wear tests were performed under five different durations, using the same normal load, speed rotation and ball. Films were deposited by unbalanced magnetron sputtering Physical Vapour Deposition (PVD) technique using TiB2 targets. TiB2 films were characterized using different methods as Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), Electron Probe Micro-Analyser (EPMA), Ultra Micro Hardness and Scratch-test Analysis, allowing to confirm that TiB2 presents adequate mechanical and physical properties. Ratio between hardness (coating and abrasive particles), wear resistance and wear coefficient were studied, showing that TiB2 films shows excellent properties for tribological applications.
Resumo:
In this work, the mechanical behavior of polyhyroxyalkanoate (PHA)/poly(lactic acid) (PLA) blends is investigated in a wide range of compositions. The mechanical properties can be optimized by varying the PHA contents of the blend. The flexural and tensile properties were estimated by different models: the rule of mixtures, KernerUemuraTakayanagi (KUT) model, NicolaiNarkis model and BlaPuknsky model. This study was aimed at investigating the adhesion between the two material phases. The results anticipate a good adhesion between both phases. Nevertheless, for low levels of incorporation of PHA (up to 30%), where PLA is expectantly the matrix, the experimental data seem to deviate from the perfect adhesion models, suggesting a decrease in the adhesion between both polymeric phases when PHA is the disperse phase. For the tensile modulus, a linear relationship is found, following the rules of mixtures (or a KUT model with perfect adhesion between phases) denoting a good adhesion between the phases over the composition range. The incorporation of PHA in the blend leads to a decrease in the flexural modulus but, at the same time, increases the tensile modulus. The impact energy of the blends varies more than 157% over the entire composition. For blends with PHA weight fraction lower than 50%, the impact strength of the blend is higher than the pure base polymers. The highest synergetic effect is found when the PLA is the matrix and the PHA is the disperse phase for the blend PHA/PLA of 30/70. The second maximum is found for the inverse composition of 70/30. PLA has a heat-deflection temperature (HDT) substantially lower than PHA. For the blends, the HDT increases with the increment in the percentage of the incorporation of PHA. With up to 50% PHA (PLA as matrix), the HDT is practically constant and equal to PLA value. Above this point (PHA matrix), the HDT of the polymer blends increases linearly with the percentage of addition of PHA.
Resumo:
The behavior of mechanical manipulators with backlash is analyzed. In order to acquire and study the signals an experimental setup is implemented. The signal processing capabilities of the wavelets are used for de-noising the experimental signals and the energy of the obtained components is analyzed. To evaluate the backlash effect upon the robotic system, it is proposed an index based on the pseudo phase plane representation. Several tests are developed that demonstrate the coherence of the results.
Resumo:
The main aims of the present study are simultaneously to relate the brazing parameters with: (i) the correspondent interfacial microstructure, (ii) the resultant mechanical properties and (iii) the electrochemical degradation behaviour of AISI 316 stainless steel/alumina brazed joints. Filler metals on such as Ag26.5Cu3Ti and Ag34.5Cu1.5Ti were used to produce the joints. Three different brazing temperatures (850, 900 and 950 C), keeping a constant holding time of 20 min, were tested. The objective was to understand the influence of the brazing temperature on the final microstructure and properties of the joints. The mechanical properties of the metal/ceramic (M/C) joints were assessed from bond strength tests carried out using a shear solicitation loading scheme. The fracture surfaces were studied both morphologically and structurally using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The degradation behaviour of the M/C joints was assessed by means of electrochemical techniques. It was found that using a Ag26.5Cu3Ti brazing alloy and a brazing temperature of 850 C, produces the best results in terms of bond strength, 234 18 MPa. The mechanical properties obtained could be explained on the basis of the different compounds identified on the fracture surfaces by XRD. On the other hand, the use of the Ag34.5Cu1.5Ti brazing alloy and a brazing temperature of 850 C produces the best results in terms of corrosion rates (lower corrosion current density), 0.76 0.21 A cm2. Nevertheless, the joints produced at 850 C using a Ag26.5Cu3Ti brazing alloy present the best compromise between mechanical properties and degradation behaviour, 234 18 MPa and 1.26 0.58 A cm2, respectively. The role of Ti diffusion is fundamental in terms of the final value achieved for the M/C bond strength. On the contrary, the Ag and Cu distribution along the brazed interface seem to play the most relevant role in the metal/ceramic joints electrochemical performance.
Resumo:
In practice the robotic manipulators present some degree of unwanted vibrations. The advent of lightweight arm manipulators, mainly in the aerospace industry, where weight is an important issue, leads to the problem of intense vibrations. On the other hand, robots interacting with the environment often generate impacts that propagate through the mechanical structure and produce also vibrations. In order to analyze these phenomena a robot signal acquisition system was developed. The manipulator motion produces vibrations, either from the structural modes or from endeffector impacts. The instrumentation system acquires signals from several sensors that capture the joint positions, mass accelerations, forces and moments, and electrical currents in the motors. Afterwards, an analysis package, running off-line, reads the data recorded by the acquisition system and extracts the signal characteristics. Due to the multiplicity of sensors, the data obtained can be redundant because the same type of information may be seen by two or more sensors. Because of the price of the sensors, this aspect can be considered in order to reduce the cost of the system. On the other hand, the placement of the sensors is an important issue in order to obtain the suitable signals of the vibration phenomenon. Moreover, the study of these issues can help in the design optimization of the acquisition system. In this line of thought a sensor classification scheme is presented. Several authors have addressed the subject of the sensor classification scheme. White (White, 1987) presents a flexible and comprehensive categorizing scheme that is useful for describing and comparing sensors. The author organizes the sensors according to several aspects: measurands, technological aspects, detection means, conversion phenomena, sensor materials and fields of application. Michahelles and Schiele (Michahelles & Schiele, 2003) systematize the use of sensor technology. They identified several dimensions of sensing that represent the sensing goals for physical interaction. A conceptual framework is introduced that allows categorizing existing sensors and evaluates their utility in various applications. This framework not only guides application designers for choosing meaningful sensor subsets, but also can inspire new systems and leads to the evaluation of existing applications. Todays technology offers a wide variety of sensors. In order to use all the data from the diversity of sensors a framework of integration is needed. Sensor fusion, fuzzy logic, and neural networks are often mentioned when dealing with problem of combing information from several sensors to get a more general picture of a given situation. The study of data fusion has been receiving considerable attention (Esteban et al., 2005; Luo & Kay, 1990). A survey of the state of the art in sensor fusion for robotics can be found in (Hackett & Shah, 1990). Henderson and Shilcrat (Henderson & Shilcrat, 1984) introduced the concept of logic sensor that defines an abstract specification of the sensors to integrate in a multisensor system. The recent developments of micro electro mechanical sensors (MEMS) with unwired communication capabilities allow a sensor network with interesting capacity. This technology was applied in several applications (Arampatzis & Manesis, 2005), including robotics. Cheekiralla and Engels (Cheekiralla & Engels, 2005) propose a classification of the unwired sensor networks according to its functionalities and properties. This paper presents a development of a sensor classification scheme based on the frequency spectrum of the signals and on a statistical metrics. Bearing these ideas in mind, this paper is organized as follows. Section 2 describes briefly the robotic system enhanced with the instrumentation setup. Section 3 presents the experimental results. Finally, section 4 draws the main conclusions and points out future work.
Resumo:
Between 2000/01 and 2006/07, the approval rate of a Thermodynamics course in a Mechanical Engineer graduation was 25%. However, a careful analysis of the results showed that 41% of the students chosen not to attend or dropped out, missing the final examination. Thus, a continuous assessment methodology was developed, whose purpose was to reduce drop out, motivating students to attend this course, believing that what was observed was due, not to the incapacity to pass, but to the anticipation of the inevitability of failure by the students. If, on one hand, motivation is defined as a broad construct pertaining to the conditions and processes that account for the arousal, direction, magnitude, and maintenance of effort, on the other hand, assessment is one of the most powerful tools to change the will that students have to learn, motivating them to learn in a quicker and permanent way. Some of the practices that were implemented, included: promoting learning goal orientation rather than performance goal orientation; cultivating intrinsic interest in the subject and put less emphasis on grades but make grading criteria explicit; emphasizing teaching approaches that encourage collaboration among students and cater for a range of teaching styles; explaining the reasons for, and the implications of, tests; providing feedback to students about their performance in a form that is non-egoinvolving and non-judgemental and helping students to interpret it; broadening the range of information used in assessing the attainment of individual students. The continuous assessment methodology developed was applied in 2007/08 and 2008/09, having found an increase in the approval from 25% to 55% (30%), accompanied by a decrease of the drop out from 41% to 23,5% (17,5%). Flunking with a numerical grade lowered from 34,4% to 22,0% (12,4%). The perception by the students of the continuous assessment relevance was evaluated with a questionnaire. 70% of the students that failed the course respond that, nevertheless, didnt repent having done the continuous assessment.
Resumo:
In this study the effect of incorporation of recycled glass-fibre reinforced polymer (GFRP) waste materials, obtained by means of milling processes, on mechanical behaviour of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste powder and fibres, with distinct size gradings, were incorporated into polyester based mortars as sand aggregates and filler replacements. Flexural and compressive loading capacities were evaluated and found better than unmodified polymer mortars. GFRP modified polyester based mortars also show a less brittle behaviour, with retention of some loading capacity after peak load. Obtained results highlight the high potential of recycled GFRP waste materials as efficient and sustainable reinforcement and admixture for polymer concrete and mortars composites, constituting an emergent waste management solution.
Resumo:
In this paper, we present two Partial Least Squares Regression (PLSR) models for compressive and flexural strength responses of a concrete composite material reinforced with pultrusion wastes. The main objective is to characterize this cost-effective waste management solution for glass fiber reinforced polymer (GFRP) pultrusion wastes and end-of-life products that will lead, thereby, to a more sustainable composite materials industry. The experiments took into account formulations with the incorporation of three different weight contents of GFRP waste materials into polyester based mortars, as sand aggregate and filler replacements, two waste particle size grades and the incorporation of silane adhesion promoter into the polyester resin matrix in order to improve binder aggregates interfaces. The regression models were achieved for these data and two latent variables were identified as suitable, with a 95% confidence level. This technological option, for improving the quality of GFRP filled polymer mortars, is viable thus opening a door to selective recycling of GFRP waste and its use in the production of concrete-polymer based products. However, further and complementary studies will be necessary to confirm the technical and economic viability of the process.
Resumo:
Thermally expandable particles (TEPs) are used in a wide variety of applications by industry mainly for weight reduction and appearance improvement for thermoplastics, inks, and coatings. In adhesive bonding, TEPs have been used for recycling purposes. However, TEPs might be used to modify structural adhesives for other new purposes, such as: to increase the joint strength by creating an adhesive functionally modified along the overlap of the joint by gradual heating and/or to heal the adhesive in case of damage. In this study, the behaviour of a structural polyurethane adhesive modified with TEPs was investigated as a preliminary study for further investigations on the potential of TEPs in adhesive joints. Tensile bulk tests were performed to get the tensile properties of the unmodified and TEPs-modified adhesive, while Double Cantilever Beam (DCB) test was performed in order to evaluate the resistance to mode I crack propagation of unmodified and TEPs-modified adhesive. In addition, in order to investigate the behaviour of the particles while encapsulated in adhesives, a thermal analysis was done. Scanning electron microscopy (SEM) was used to examine the fracture surface morphology of the specimens. The fracture toughness of the TEPs-modified adhesive was found to increase by addition of TEPs, while the adhesive tensile strength at yield decreased. The temperature where the particles show the maximum expansion varied with TEPs concentration, decreasing with increasing the TEPs content.
Resumo:
The container loading problem (CLP) is a combinatorial optimization problem for the spatial arrangement of cargo inside containers so as to maximize the usage of space. The algorithms for this problem are of limited practical applicability if real-world constraints are not considered, one of the most important of which is deemed to be stability. This paper addresses static stability, as opposed to dynamic stability, looking at the stability of the cargo during container loading. This paper proposes two algorithms. The first is a static stability algorithm based on static mechanical equilibrium conditions that can be used as a stability evaluation function embedded in CLP algorithms (e.g. constructive heuristics, metaheuristics). The second proposed algorithm is a physical packing sequence algorithm that, given a container loading arrangement, generates the actual sequence by which each box is placed inside the container, considering static stability and loading operation efficiency constraints.
Resumo:
Reading is a basic competence that students have to master to be successful. Despite this fact, recent studies show that there may be a significant decline in the reading abilities of college students, one of the most educated segments of any population. This work is a prospecting study regarding the assessment of reading abilities of college students, namely in the context of Engineering education. Based on an existing screening test for assessing reading difficulties of children and teenagers, this work presents the results obtained by administrating that test to students at a top engineering institution in Portugal. An outcome of this study is the determination of a time range suitable for a massive, time limited, use of the previously mentioned test to assess college students, thus enabling a basic tool that will permit, in future works, to screen reading abilities in wider college populations. This work also shows evidence that ca. 20% of college students present a poor reading performance, revealing a strong need for monitoring college students reading abilities along different generations.
Resumo:
We agree with Ling-Yun et al. [5] and Zhang and Duan comments [2] about the typing error in equation (9) of the manuscript [8]. The correct formula was initially proposed in [6, 7]. The formula adopted in our algorithms discussed in our papers [1, 3, 4, 8] is, in fact, the following: ...
Resumo:
A crescente evoluo na tecnologia das juntas coladas conferiu um potencial atractivo s ligaes adesivas, com aplicaes nas mais variadas indstrias. Isto deve-se no s aos aspetos econmicos, tais como a melhoria da cadncia de produo mas tambm resistncia mecnica que estas proporcionam. A possibilidade de ligar facilmente materiais distintos, a distribuio mais uniforme das tenses, a melhor resistncia fadiga e a elevada capacidade de amortecimento de vibraes esto entre as principais vantagens da utilizao deste tipo de ligao. Estas propriedades transformam as juntas coladas numas das preferidas no momento de seleo de meios de unio. O trabalho desenvolvido nesta dissertao enquadra-se no mbito das ligaes adesivas e tem como principais objetivos a produo de uma ferramenta para a produo de provetes de adesivo, assim como a determinao das propriedades mecnicas trao dos mesmos para testar o desempenho do molde fabricado. Para tal, utilizou-se um adesivo frgil (Araldite AV 138), um dctil (Araldite 2015) e um muito dctil (SikaForce 7888). Paralelamente selecionado o mtodo mais adequado na obteno destes provetes, designadamente escolhendo entre a moldao em molde aberto e a injeo em molde fechado. Com vista obteno dos provetes, foi projetado e construdo um molde em ao. Recorrendo mquina de trao Shimadzu AG X 100, realizaram-se os respetivos ensaios de trao, para a determinao de todas as propriedades mecnicas dos adesivos. Para efeitos de comparao de resultados foram utilizados dois tipos de extensmetros, um mecnico e um tico. Os resultados experimentais permitiram observar que a presena de vazios afetou especialmente a deformao de rotura e a tenso de rotura. Detetaram-se pequenas discordncias, comparativamente com os estudos publicados, de algumas caractersticas mecnicas obtidas dos diversos adesivos utilizados. Constatou-se tambm um ligeiro desfasamento entre os valores adquiridos com os dois tipos de extensmetros utilizados.