2 resultados para Maple Molecular Mechanics Water

em Instituto Politécnico do Porto, Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

β-lactamases are hydrolytic enzymes that inactivate the β-lactam ring of antibiotics such as penicillins and cephalosporins. The major diversity of studies carried out until now have mainly focused on the characterization of β-lactamases recovered among clinical isolates of Gram-positive staphylococci and Gram-negative enterobacteria, amongst others. However, only some studies refer to the detection and development of β-lactamases carriers in healthy humans, sick animals, or even in strains isolated from environmental stocks such as food, water, or soils. Considering this, we proposed a 10-week laboratory programme for the Biochemistry and Molecular Biology laboratory for majors in the health, environmental, and agronomical sciences. During those weeks, students would be dealing with some basic techniques such as DNA extraction, bacterial transformation, polymerase chain reaction (PCR), gel electrophoresis, and the use of several bioinformatics tools. These laboratory exercises would be conducted as a mini research project in which all the classes would be connected with the previous ones. This curriculum was compared in an experiment involving two groups of students from two different majors. The new curriculum, with classes linked together as a mini research project, was taught to a major in Pharmacy and an old curriculum was taught to students from environmental health. The results showed that students who were enrolled in the new curriculum obtained better results in the final exam than the students who were enrolled in the former curriculum. Likewise, these students were found to be more enthusiastic during the laboratory classes than those from the former curriculum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyanobacteria deteriorate the water quality and are responsible for emerging outbreaks and epidemics causing harmful diseases in Humans and animals because of their toxins. Microcystin-LR (MCT) is one of the most relevant cyanotoxin, being the most widely studied hepatotoxin. For safety purposes, the World Health Organization recommends a maximum value of 1 μg L−1 of MCT in drinking water. Therefore, there is a great demand for remote and real-time sensing techniques to detect and quantify MCT. In this work a Fabry–Pérot sensing probe based on an optical fibre tip coated with a MCT selective thin film is presented. The membranes were developed by imprinting MCT in a sol–gel matrix that was applied over the tip of the fibre by dip coating. The imprinting effect was obtained by curing the sol–gel membrane, prepared with (3-aminopropyl) trimethoxysilane (APTMS), diphenyl-dimethoxysilane (DPDMS), tetraethoxysilane (TEOS), in the presence of MCT. The imprinting effect was tested by preparing a similar membrane without template. In general, the fibre Fabry–Pérot with a Molecular Imprinted Polymer (MIP) sensor showed low thermal effect, thus avoiding the need of temperature control in field applications. It presented a linear response to MCT concentration within 0.3–1.4 μg L−1 with a sensitivity of −12.4 ± 0.7 nm L μg−1. The corresponding Non-Imprinted Polymer (NIP) displayed linear behaviour for the same MCT concentration range, but with much less sensitivity, of −5.9 ± 0.2 nm L μg−1. The method shows excellent selectivity for MCT against other species co-existing with the analyte in environmental waters. It was successfully applied to the determination of MCT in contaminated samples. The main advantages of the proposed optical sensor include high sensitivity and specificity, low-cost, robustness, easy preparation and preservation.