21 resultados para Male Sperm Priority
em Instituto Politécnico do Porto, Portugal
Resumo:
Major depressive disorder (MDD) is a highly prevalent disorder, which has been associated with an abnormal response of the hypothalamus–pituitary–adrenal (HPA) axis. Reports have argued that an abnormal HPA axis response can be due to an altered P-Glycoprotein (P-GP) function. This argument suggests that genetic polymorphisms in ABCB1 may have an effect on the HPA axis activity; however, it is still not clear if this influences the risk of MDD. Our study aims to evaluate the effect of ABCB1 C1236T, G2677TA and C3435T genetic polymorphisms on MDD risk in a subset of Portuguese patients. DNA samples from 80 MDD patients and 160 control subjects were genotyped using TaqMan SNP Genotyping assays. A significant protection for MDD males carrying the T allele was observed (C1236T: odds ratio (OR) = 0.360, 95% confidence interval [CI]: [0.140– 0.950], p = 0.022; C3435T: OR= 0.306, 95% CI: [0.096–0.980], p = 0.042; and G2677TA: OR= 0.300, 95% CI: [0.100– 0.870], p = 0.013). Male Portuguese individuals carrying the 1236T/2677T/3435T haplotype had nearly 70% less risk of developing MDD (OR = 0.313, 95% CI: [0.118–0.832], p = 0.016, FDR p = 0.032). No significant differences were observed regarding the overall subjects. Our results suggest that genetic variability of the ABCB1 is associated with MDD development in male Portuguese patients. To the best of our knowledge, this is the first report in Caucasian samples to analyze the effect of these ABCB1 genetic polymorphisms on MDD risk.
Resumo:
Thiodicarb, a carbamate pesticide widely used on crops, may pose several environmental and health concerns. This study aimed to explore its toxicological profile on male rats using hematological, biochemical, histopathological, and flow cytometry markers. Exposed animals were dosed daily at 10, 20, or 40 mg/kg/body weight (group A, B, and C, respectively) during 30 d. No significant changes were observed in hematological parameters among all groups. After 10 d, a decrease of total cholesterol levels was noted in rats exposed to 40 mg/kg. Aspartate aminotransferase (AST) activity increased (group A at 20 d; groups A and B at 30 d) and alkaline phosphatase (ALP) (group B at 30 d) activity significantly reduced. At 30 d a decrease of some of the other evaluated parameters was observed with total cholesterol and urea levels in group A as well as total protein and creatinine levels in groups A and B. Histological results demonstrated multi-organ dose-related damage in thiodicarb-exposed animals, evidenced as hemorrhagic and diffuse vacuolation in hepatic tissue; renal histology showed disorganized glomeruli and tubular cell degeneration; spleen was ruptured with white pulp and clusters of iron deposits within red pulp; significant cellular loss was noted at the cortex of thymus; and degenerative changes were observed within testis. The histopathologic alterations were most prominent in the high-dose group. Concerning flow cytometry studies, an increase of lymphocyte number, especially T lymphocytes, was seen in blood samples from animals exposed to the highest dose. Taken together, these results indicate marked systemic organ toxicity in rats after subacute exposure to thiodicarb.
Resumo:
Consider the problem of scheduling sporadic messages with deadlines on a wireless channel. We propose a collision-free medium access control (MAC) protocol which implements static-priority scheduling and present a schedulability analysis technique for the protocol. The MAC protocol allows multiple masters and is fully distributed; it is an adaptation to a wireless channel of the dominance protocol used in the CAN bus. But unlike that protocol, our protocol does not require a node having the ability to receive an incoming bit from the channel while transmitting to the channel.
Resumo:
P-NET is a multi-master fieldbus standard based on a virtual token passing scheme. In P-NET each master is allowed to transmit only one message per token visit. In the worst-case, the communication response time can be derived considering that, in each token cycle, all stations use the token to transmit a message. In this paper, we define a more sophisticated P-NET model, which considers the actual token utilisation. We then analyse the possibility of implementing a local priority-based scheduling policy to improve the real-time behaviour of P-NET.
Resumo:
In this paper we address the real-time capabilities of P-NET, which is a multi-master fieldbus standard based on a virtual token passing scheme. We show how P-NET’s medium access control (MAC) protocol is able to guarantee a bounded access time to message requests. We then propose a model for implementing fixed prioritybased dispatching mechanisms at each master’s application level. In this way, we diminish the impact of the first-come-first-served (FCFS) policy that P-NET uses at the data link layer. The proposed model rises several issues well known within the real-time systems community: message release jitter; pre-run-time schedulability analysis in non pre-emptive contexts; non-independence of tasks at the application level. We identify these issues in the proposed model and show how results available for priority-based task dispatching can be adapted to encompass priority-based message dispatching in P-NET networks.
Resumo:
While the earliest deadline first algorithm is known to be optimal as a uniprocessor scheduling policy, the implementation comes at a cost in terms of complexity. Fixed taskpriority algorithms on the other hand have lower complexity but higher likelihood of task sets being declared unschedulable, when compared to earliest deadline first (EDF). Various attempts have been undertaken to increase the chances of proving a task set schedulable with similar low complexity. In some cases, this was achieved by modifying applications to limit preemptions, at the cost of flexibility. In this work, we explore several variants of a concept to limit interference by locking down the ready queue at certain instances. The aim is to increase the prospects of schedulability of a given task system, without compromising on complexity or flexibility, when compared to the regular fixed task-priority algorithm. As a final contribution, a new preemption threshold assignment algorithm is provided which is less complex and more straightforward than the previous method available in the literature.
Resumo:
This paper discusses the increased need to support dynamic task-level parallelism in embedded real-time systems and proposes a Java framework that combines the Real-Time Specification for Java (RTSJ) with the Fork/Join (FJ) model, following a fixed priority-based scheduling scheme. Our work intends to support parallel runtimes that will coexist with a wide range of other complex independently developed applications, without any previous knowledge about their real execution requirements, number of parallel sub-tasks, and when those sub-tasks will be generated.
Resumo:
With progressing CMOS technology miniaturization, the leakage power consumption starts to dominate the dynamic power consumption. The recent technology trends have equipped the modern embedded processors with the several sleep states and reduced their overhead (energy/time) of the sleep transition. The dynamic voltage frequency scaling (DVFS) potential to save energy is diminishing due to efficient (low overhead) sleep states and increased static (leakage) power consumption. The state-of-the-art research on static power reduction at system level is based on assumptions that cannot easily be integrated into practical systems. We propose a novel enhanced race-to-halt approach (ERTH) to reduce the overall system energy consumption. The exhaustive simulations demonstrate the effectiveness of our approach showing an improvement of up to 8 % over an existing work.
Resumo:
In this paper we consider global fixed-priority preemptive multiprocessor scheduling of constrained-deadline sporadic tasks that share resources in a non-nested manner. We develop a novel resource-sharing protocol and a corresponding schedulability test for this system. We also develop the first schedulability analysis of priority inheritance protocol for the aforementioned system. Finally, we show that these protocols are efficient (based on the developed schedulability tests) for a class of priority-assignments called reasonable priority-assignments.
Resumo:
Consider global fixed-priority preemptive multiprocessor scheduling of implicit-deadline sporadic tasks. I conjecture that the utilization bound of SM-US(√2−1) is √2-1.
Resumo:
We propose a wireless medium access control (MAC) protocol that provides static-priority scheduling of messages in a guaranteed collision-free manner. Our protocol supports multiple broadcast domains, resolves the wireless hidden terminal problem and allows for parallel transmissions across a mesh network. Arbitration of messages is achieved without the notion of a master coordinating node, global clock synchronization or out-of-band signaling. The protocol relies on bit-dominance similar to what is used in the CAN bus except that in order to operate on a wireless physical layer, nodes are not required to receive incoming bits while transmitting. The use of bit-dominance efficiently allows for a much larger number of priorities than would be possible using existing wireless solutions. A MAC protocol with these properties enables schedulability analysis of sporadic message streams in wireless multihop networks.
Resumo:
Consider the problem of scheduling a set of sporadically arriving tasks on a uniform multiprocessor with the goal of meeting deadlines. A processor p has the speed Sp. Tasks can be preempted but they cannot migrate between processors. On each processor, tasks are scheduled according to rate-monotonic. We propose an algorithm that can schedule all task sets that any other possible algorithm can schedule assuming that our algorithm is given processors that are √2 / √2−1 ≈ 3.41 times faster. No such guarantees are previously known for partitioned static-priority scheduling on uniform multiprocessors.
Resumo:
Consider the problem of scheduling real-time tasks on a multiprocessor with the goal of meeting deadlines. Tasks arrive sporadically and have implicit deadlines, that is, the deadline of a task is equal to its minimum inter-arrival time. Consider this problem to be solved with global static-priority scheduling. We present a priority-assignment scheme with the property that if at most 38% of the processing capacity is requested then all deadlines are met.
Resumo:
This paper studies static-priority preemptive scheduling on a multiprocessor using partitioned scheduling. We propose a new scheduling algorithm and prove that if the proposed algorithm is used and if less than 50% of the capacity is requested then all deadlines are met. It is known that for every static-priority multiprocessor scheduling algorithm, there is a task set that misses a deadline although the requested capacity is arbitrary close to 50%.
Resumo:
Real-time scheduling usually considers worst-case values for the parameters of task (or message stream) sets, in order to provide safe schedulability tests for hard real-time systems. However, worst-case conditions introduce a level of pessimism that is often inadequate for a certain class of (soft) real-time systems. In this paper we provide an approach for computing the stochastic response time of tasks where tasks have inter-arrival times described by discrete probabilistic distribution functions, instead of minimum inter-arrival (MIT) values.