6 resultados para Magnetron sputtering

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the results of the growth of Cu-Sn-S ternary chalcogenide compounds by sulfurization of dc magnetron sputtered metallic precursors. Tetragonal Cu2SnS3 forms for a maximum sulfurization temperature of 350 ºC. Cubic Cu2SnS3 is obtained at sulfurization temperatures above 400 ºC. These results are supported by XRD analysis and Raman spectroscopy measurements. The latter analysis shows peaks at 336 cm-1, 351 cm-1 for tetragonal Cu2SnS3, and 303 cm-1, 355 cm-1 for cubic Cu2SnS3. Optical analysis shows that this phase change lowers the band gap from 1.35 eV to 0.98 eV. At higher sulfurization temperatures increased loss of Sn is expected in the sulphide form. As a consequence, higher Cu content ternary compounds like Cu3SnS4 grow. In these conditions, XRD and Raman analysis only detected orthorhombic (Pmn21) phase (petrukite). This compound has Raman peaks at 318 cm-1, 348 cm-1 and 295 cm-1. For a sulfurization temperature of 450 ºC the samples present a multi-phase structure mainly composed by cubic Cu2SnS3 and orthorhombic (Pmn21) Cu3SnS4. For higher temperatures, the samples are single phase and constituted by orthorhombic (Pmn21) Cu3SnS4. Transmittance and reflectance measurements were used to estimate a band gap of 1.60 eV. For comparison we also include the results for Cu2ZnSnS4 obtained using similar growth conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main purpose of this work is to present and to interpret the change of structure and physical properties of tantalum oxynitride (TaNxOy) thin films, produced by dc reactive magnetron sputtering, by varying the processing parameters. A set of TaNxOy films was prepared by varying the reactive gases flow rate, using a N2/O2 gas mixture with a concentration ratio of 17:3. The different films, obtained by this process, exhibited significant differences. The obtained composition and the interpretation of X-ray diffraction results, shows that, depending on the partial pressure of the reactive gases, the films are: essentially dark grey metallic, when the atomic ratio (N + O)/Ta < 0.1, evidencing a tetragonal β-Ta structure; grey-brownish, when 0.1 < (N + O)/Ta < 1, exhibiting a face-centred cubic (fcc) TaN-like structure; and transparent oxide-type, when (N + O)/Ta > 1, evidencing the existence of Ta2O5, but with an amorphous structure. These transparent films exhibit refractive indexes, in the visible region, always higher than 2.0. The wear resistance of the films is relatively good. The best behaviour was obtained for the films with (N + O)/Ta ≈ 0.5 and (N + O)/Ta ≈ 1.3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

TiO2 nanorod films have been deposited on ITO substrates by dc reactive magnetron sputtering technique. The structures of these nanorod films were modified by the variation of the oxygen pressure during the sputtering process. Although all these TiO2 nanorod films deposited at different oxygen pressures show an anatase structure, the orientation of the nanorod films varies with the oxygen pressure. Only a very weak (101) diffraction peak can be observed for the TiO2 nanorod film prepared at low oxygen pressure. However, as the oxygen pressure is increased, the (220) diffraction peak appears and the intensity of this diffraction peak is increased with the oxygen pressure. The results of the SEM show that these TiO2 nanorods are perpendicular to the ITO substrate. At low oxygen pressure, these sputtered TiO2 nanorods stick together and have a dense structure. As the oxygen pressure is increased, these sputtered TiO2 nanorods get separated gradually and have a porous structure. The optical transmittance of these TiO2 nanorod films has been measured and then fitted by OJL model. The porosities of the TiO2 nanorod films have been calculated. The TiO2 nanorod film prepared at high oxygen pressure shows a high porosity. The dye-sensitized solar cells (DSSCs) have been assembled using these TiO2 nanorod films prepared at different oxygen pressures as photoelectrode. The optimum performance was achieved for the DSSC using the TiO2 nanorod film with the highest (220) diffraction peak and the highest porosity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we employed a hybrid method, combining RF-magnetron sputtering with evaporation, for the deposition of tailor made metallic precursors, with varying number of Zn/Sn/Cu (ZTC) periods and compared two approaches to sulphurization. Two series of samples with 1×, 2× and 4× ZTC periods have been prepared. One series of precursors was sulphurized in a tubular furnace directly exposed to a sulphur vapour and N2+5% H2 flux at a pressure of 5.0×10+4 Pa. A second series of identical precursors was sulphurized in the same furnace but inside a graphite box where sulphur pellets have been evaporated again in the presence of N2+5% H2 and at the same pressure as for the sulphur flux experiments. The morphological and chemical analyses revealed a small grain structure but good average composition for all three films sulphurized in the graphite box. As for the three films sulphurized in sulphur flux grain growth was seen with the increase of the number of ZTC periods whilst, in terms of composition, they were slightly Zn poor. The films' crystal structure showed that Cu2ZnSnS4 is the dominant phase. However, in the case of the sulphur flux films SnS2 was also detected. Photoluminescence spectroscopy studies showed an asymmetric broad band emission whichoccurs in the range of 1–1.5 eV. Clearly the radiative recombination efficiency is higher in the series of samples sulphurized in sulphur flux. We have found that sulphurization in sulphur flux leads to better film morphology than when the process is carried out in a graphite box in similar thermodynamic conditions. Solar cells have been prepared and characterized showing a correlation between improved film morphology and cell performance. The best cells achieved an efficiency of 2.4%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abrasion by glass fibers during injection molding of fiber reinforced plastics raises new challenges to the wear performance of the molds. In the last few decades, a large number of PVD and CVD coatings have been developed with the aim of minimizing abrasion problems. In this work, two different coatings were tested in order to increase the wear resistance of the surface of a mold used for glass fiber reinforced plastics: TiAlSiN and CrN/CrCN/DLC. TiAlSiN was deposited as a graded monolayer coating while CrN/CrCN/DLC was a nanostructured coating consisting of three distinct layers. Both coatings were produced by PVD unbalanced magnetron sputtering and were characterized using scanning electron microscopy (SEM) provided with energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), micro hardness (MH) and scratch test analysis. Coating morphology, thickness, roughness, chemical composition and structure, hardness and adhesion to the substrate were investigated. Wear resistance was characterized through industrial tests with coated samples and an uncoated reference sample inserted in a feed channel of a plastic injection mold working with 30 wt.% glass fiber reinforced polypropylene. Results after 45,000 injection cycles indicate that the wear resistance of the mold was increased by a factor of 25 and 58, by the TiAlSiN and CrN/CrCN/DLC coatings, respectively, over the uncoated mold steel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cu2ZnSnSe4 (CZTSe) is a p-type semiconductor with a high absorption coefficient, 104 to 105 cm-1, and is being seen as a possible replacement for Cu(In,Ga)Se2 in thin film solar cells. Yet, there are some fundamental properties of CZTSe that are not well known, one of them is its band gap. In order to resolve its correct value it is necessary to improve the growth conditions to ensure that single phase crystalline thin films are obtained. One of the problems encountered when growing CZTSe is the loss of Sn through evaporation of SnSe. Stoichiometric films are then difficult to obtain and usually there are other phases present. One possible way to overcome this problem is to increase the pressure of growth of CZTSe. This can be done by introducing an atmosphere of an inert gas like Ar or N2. In this work we report the results of morphological, structural and optical studies of the properties of CZTSe thin films grown by selenization of DC magnetron sputtered metallic layers under different Ar pressures. The films are analysed by SEM/EDS, Raman scattering and XRD.