52 resultados para MAG filler wire welding
em Instituto Politécnico do Porto, Portugal
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both the cross-linked nature of thermoset resins, which cannot be remoulded, and the complex composition of the composite itself, which includes glass fibres, polymer matrix and different types of inorganic fillers. Hence, to date, most of the thermoset based GFRP waste is being incinerated or landfilled leading to negative environmental impacts and additional costs to producers and suppliers. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, the effect of the incorporation of mechanically recycled GFRP pultrusion wastes on flexural and compressive behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates (0%, 4%, 8% and 12%, w/w), with distinct size grades (coarse fibrous mixture and fine powdered mixture), were incorporated into polyester PM as sand aggregates and filler replacements. The effect of the incorporation of a silane coupling agent was also assessed. Experimental results revealed that GFRP waste filled polymer mortars show improved mechanical behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse as raw material in concrete-polymer composites.
Resumo:
The development and applications of thermoset polymeric composites, namely fiber reinforced polymers (FRP), have shifted in the last decades more and more into the mass market [1]. Production and consume have increased tremendously mainly for the construction, transportation and automobile sectors [2, 3]. Although the many successful uses of thermoset composite materials, recycling process of byproducts and end of lifecycle products constitutes a more difficult issue. The perceived lack of recyclability of composite materials is now increasingly important and seen as a key barrier to the development or even continued used of these materials in some markets.
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both the cross-linked nature of thermoset resins, which cannot be remoulded, and the complex composition of the composite itself, which includes glass fibres, polymer matrix and different types of inorganic fillers. Hence, to date, most of the thermoset based GFRP waste is being incinerated or landfilled leading to negative environmental impacts and additional costs to producers and suppliers. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, the effect of the incorporation of mechanically recycled GFRP pultrusion wastes on flexural and compressive behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates (0%, 4%, 8% and 12%, w/w), with distinct size grades (coarse fibrous mixture and fine powdered mixture), were incorporated into polyester PM as sand aggregates and filler replacements. The effect of the incorporation of a silane coupling agent was also assessed. Experimental results revealed that GFRP waste filled polymer mortars show improved mechanical behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse as raw material in concrete-polymer composites.
Resumo:
Este é um projeto I&D interno do INEGI, com as unidades DPS e LOME, que tem em vista a utilização de componentes disponíveis no INEGI para o estudo de um equipamento capaz de efetuar soldaduras por Friction Stir Welding. O equipamento já conta com controlo numérico para um sistema de três eixos e os respetivos motores, ficando assim encarregue de tirar o máximo proveito possível destes componentes. Este equipamento terá como finalidade munir o INEGI com um equipamento capaz de dar resposta a eventuais projetos externos/internos bem como para fins de investigação para a melhoria da qualidade do processo de soldadura. A conceção deste equipamento tem a particularidade das condições envolventes do processo nomeadamente os esforços desenvolvidos durante o processo de soldadura, em particular a força vertical (eixo da ferramenta) que é necessária fazer de forma a evitar a ascensão de material da junta de soldadura. A soldadura por Friction Stir Welding, é um processo de soldadura relativamente actual, desenvolvido em 1991 por Wayne Thomas pelo The Welding Institute que se sobrepõe aos métodos de soldadura convencionais, uma vez que não necessita de levar o/os materiais acima da sua temperatura de fusão, sendo um processo de soldadura no estado solido, o material não chega a fundir. Este processo consiste na utilização de uma ferramenta em rotação que que se desloca ao longo da junta de soldadura, que uma vez a fricção gerada entre a ferramenta e o material base gera calor que promove o aquecimento e quase fusão do material base. A ligação do material dá-se aquando a passagem da ferramenta na junta, misturando os materiais. Com o recurso a este método de fabrico é possível efetuar soldaduras com grande qualidade em materiais considerados de difícil soldabilidade pelos métodos convencionais, como por exemplo o Alumínio. Neste projecto foram estudadas varias soluções, contactados vários fornecedores e com o seu feedback foi desenvolvido o equipamento. Este projecto consiste essencialmente na análise estrutural e selecção de equipamentos. O equipamento final resultou de uma série de iterações e ideias de forma a optimizar toda estrutura para a magnitude dos esforços envolvidos, obtendo no final um equipamento capaz de cumprir os requisitos. No final prevêse um equipamento com a capacidade de suportar esforços verticais de 50
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
Este trabalho surgiu do âmbito da Tese de Dissertação do Mestrado em Energias Sustentáveis do Instituto Superior de Engenharia do Porto, tendo o acompanhamento dos orientadores da empresa Laboratório Ecotermolab do Instituto de Soldadura e Qualidade e do Instituto Superior de Engenharia do Porto, de forma a garantir a linha traçada indo de acordo aos objectivos propostos. A presente tese abordou o estudo do impacto da influência do ar novo na climatização de edifícios, tendo como base de apoio à análise a simulação dinâmica do edifício em condições reais num programa adequado, acreditado pela norma ASHRAE 140-2004. Este trabalho pretendeu evidenciar qual o impacto da influência do ar novo na climatização de um edifício com a conjugação de vários factores, tais como, ocupação, actividades e padrões de utilização (horários), iluminação e equipamentos, estudando ainda a possibilidade do sistema funcionar em regime de “Free-Cooling”. O princípio partiu fundamentalmente por determinar até que ponto se pode climatizar recorrendo único e exclusivamente à introdução de ar novo em regime de “Free-Cooling”, através de um sistema tudo-ar de Volume de Ar Variável - VAV, sem o apoio de qualquer outro sistema de climatização auxiliar localizado no espaço, respeitando os caudais mínimos impostos pelo RSECE (Decreto-Lei 79/2006). Numa primeira fase foram identificados todos os dados relativos à determinação das cargas térmicas do edifício, tendo em conta todos os factores e contributos alusivos ao valor da carga térmica, tais como a transmissão de calor e seus constituintes, a iluminação, a ventilação, o uso de equipamentos e os níveis de ocupação. Consequentemente foram elaboradas diversas simulações dinâmicas com o recurso ao programa EnergyPlus integrado no DesignBuilder, conjugando variáveis desde as envolventes à própria arquitectura, perfis de utilização ocupacional, equipamentos e taxas de renovação de ar nos diferentes espaços do edifício em estudo. Obtiveram-se vários modelos de forma a promover um estudo comparativo e aprofundado que permitisse determinar o impacto do ar novo na climatização do edifício, perspectivando a capacidade funcional do sistema funcionar em regime de “Free-Cooling”. Deste modo, a análise e comparação dos dados obtidos permitiram chegar às seguintes conclusões: Tendo em consideração que para necessidades de arrefecimento bastante elevadas, o “Free-Cooling” diurno revelou-se pouco eficaz ou quase nulo, para o tipo de clima verificado em Portugal, pois o diferencial de temperatura existente entre o exterior e o interior não é suficiente de modo a tornar possível a remoção das cargas de forma a baixar a temperatura interior para o intervalo de conforto. Em relação ao “Free-Cooling” em horário nocturno ou pós-laboral, este revelou-se bem mais eficiente. Obtiveram-se prestações muito interessantes sobretudo durante as estações de aquecimento e meia-estação, tendo em consideração o facto de existir necessidades de arrefecimento mesmo durante a estação de aquecimento. Referente à ventilação nocturna, isto é, em períodos de madrugada e fecho do edifício, concluiu-se que tal contribui para um abaixamento do calor acumulado durante o dia nos materiais construtivos do edifício e que é libertado ou restituído posteriormente para os espaços em períodos mais tardios. De entre as seguintes variáveis, aumento de caudal de ar novo insuflado e o diferencial de temperatura existente entre o ar exterior e interior, ficou demonstrado que este último teria maior peso contributivo na remoção do calor. Por fim, é ponto assente que de um modo geral, um sistema de climatização será sempre indispensável devido a cargas internas elevadas, requisitos interiores de temperatura e humidade, sendo no entanto aconselhado o “Free- Cooling” como um opção viável a incorporar na solução de climatização, de forma a promover o arrefecimento natural, a redução do consumo energético e a introdução activa de ar novo.
Resumo:
Actualmente a área da domótica (automação de casas e edifícios) encontra-se em franca expansão, com principal relevância nos países mais desenvolvidos, com um crescimento de mercado de mais de 10% ao ano. Existem inúmeras razoes para a crescente implantação da domótica em edifícios, entre as quais a maior eficiência energética, o aumento da segurança e a redução do custo de aquisição das tecnologias. No que diz respeito as habitações particulares, acrescenta-se essencialmente o aumento do conforto devido ao grau de automação trazido pela domótica. Apesar da domótica não ser uma área cientifico-tecnológica recente, a rápida evolução das tecnologias associadas, nomeadamente a nível das redes de comunicação com e sem fios, foi uma das razoes fundamentais para a elaboração desta Tese. Acresce o facto de o candidato estar actualmente envolvido profissionalmente na área, pelo qual esta Tese assume uma particular importância. Realizou-se um estudo comparativo das tecnologias de domótica mais relevantes, escolhidas quer pelas suas características técnicas quer pela sua implantação de mercado e potencial futuro - KNX/EIB, LonWorks, HomePlug, ZigBee e Z-Wave. Destas, comprovou-se que as duas primeiras são aquelas que, actualmente, tem maior adequabilidade para serem aplicadas em projectos de domótica. Foi por isso efectuado um estudo mais elaborado das tecnologias LonWorks e KNX/EIB, incluindo a forma pratica de instalação/programação, a elaboração de dois demonstradores e de dois projectos (de acordo com um caderno de encargos real), usando as duas tecnologias. Concluiu-se que a tecnologia LonWorks apresenta vantagens no que respeita a escalabilidade (dimensão) dos sistemas. Em termos futuros, prevê-se a necessidade da interoperabilidade entre os nos/redes cablados (tradicionais) com nos/redes sem fio, seguindo a tendência para os ambientes inteligentes (“ambient intelligence/assisted living”, “smart spaces”, “ubiquitous computing).
Resumo:
Abstract: Ototoxic substances have been associated to damage of the auditory system, and its effects are potentiated by noise exposure. The present study aims at analyzing auditory changes from combined exposure to noise and organic solvents, through a pilot study in the furniture industry sector. Audiological tests were performed on 44 workers, their levels of exposure to toluene, xylene and ethylbenzene were determined and the levels of noise exposure were evaluated. The results showed that workers are generally exposed to high noise levels and cabin priming filler and varnish sector workers have high levels of exposure to toluene. However, no hearing loss was registered among the workers. Workers exposed simultaneously to noise and ototoxic substances do not have a higher degree of hearing loss than those workers exposed only to noise. Thus, the results of this study did not show that the combined exposure to noise and the organic solvent is associated with hearing disorders.
Resumo:
Component joining is typically performed by welding, fastening, or adhesive-bonding. For bonded aerospace applications, adhesives must withstand high-temperatures (200°C or above, depending on the application), which implies their mechanical characterization under identical conditions. The extended finite element method (XFEM) is an enhancement of the finite element method (FEM) that can be used for the strength prediction of bonded structures. This work proposes and validates damage laws for a thin layer of an epoxy adhesive at room temperature (RT), 100, 150, and 200°C using the XFEM. The fracture toughness (G Ic ) and maximum load ( ); in pure tensile loading were defined by testing double-cantilever beam (DCB) and bulk tensile specimens, respectively, which permitted building the damage laws for each temperature. The bulk test results revealed that decreased gradually with the temperature. On the other hand, the value of G Ic of the adhesive, extracted from the DCB data, was shown to be relatively insensitive to temperature up to the glass transition temperature (T g ), while above T g (at 200°C) a great reduction took place. The output of the DCB numerical simulations for the various temperatures showed a good agreement with the experimental results, which validated the obtained data for strength prediction of bonded joints in tension. By the obtained results, the XFEM proved to be an alternative for the accurate strength prediction of bonded structures.
Resumo:
In this study, the effect of incorporation of recycled glass fibre reinforced plastics (GFRP) waste materials, obtained by means of shredding and milling processes, on mechanical behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates, between 4% up to 12% in weight, were incorporated into polyester PM materials as sand aggregates and filler replacements. The effect of the addition of a silane coupling agent to resin binder was also evaluated. Applied waste material was proceeding from the shredding of the leftovers resultant from the cutting and assembly processes of GFRP pultrusion profiles. Currently, these leftovers as well as non-conform products and scrap resulting from pultrusion manufacturing process are landfilled, with additional costs to producers and suppliers. Hence, besides the evident environmental benefits, a viable and feasible solution for these wastes would also conduct to significant economic advantages. Design of experiments and data treatment were accomplish by means of full factorial design approach and analysis of variance ANOVA. Experimental results were promising toward the recyclability of GFRP waste materials as partial replacement of aggregates and reinforcement for PM materials, with significant improvements on mechanical properties of resultant mortars with regards to waste-free formulations.
Resumo:
In this paper the adequacy and the benefit of incorporating glass fibre reinforced polymer (GFRP) waste materials into polyester based mortars, as sand aggregates and filler replacements, are assessed. Different weight contents of mechanically recycled GFRP wastes with two particle size grades are included in the formulation of new materials. In all formulations, a polyester resin matrix was modified with a silane coupling agent in order to improve binder-aggregates interfaces. The added value of the recycling solution was assessed by means of both flexural and compressive strengths of GFRP admixed mortars with regard to those of the unmodified polymer mortars. Planning of experiments and data treatment were performed by means of full factorial design and through appropriate statistical tools based on analyses of variance (ANOVA). Results show that the partial replacement of sand aggregates by either type of GFRP recyclates improves the mechanical performance of resultant polymer mortars. In the case of trial formulations modified with the coarser waste mix, the best results are achieved with 8% waste weight content, while for fine waste based polymer mortars, 4% in weight of waste content leads to the higher increases on mechanical strengths. This study clearly identifies a promising waste management solution for GFRP waste materials by developing a cost-effective end-use application for the recyclates, thus contributing to a more sustainable fibre-reinforced polymer composites industry.
Resumo:
Joining of components with structural adhesives is currently one of the most widespread techniques for advanced structures (e.g., aerospace or aeronautical). Adhesive bonding does not involve drilling operations and it distributes the load over a larger area than mechanical joints. However, peak stresses tend to develop near the overlap edges because of differential straining of the adherends and load asymmetry. As a result, premature failures can be expected, especially for brittle adhesives. Moreover, bonded joints are very sensitive to the surface treatment of the material, service temperature, humidity and ageing. To surpass these limitations, the combination of adhesive bonding with spot-welding is a choice to be considered, adding a few advantages like superior static strength and stiffness, higher peeling and fatigue strength and easier fabrication, as fixtures during the adhesive curing are not needed. The experimental and numerical study presented here evaluates hybrid spot-welded/bonded single-lap joints in comparison with the purely spot-welded and bonded equivalents. A parametric study on the overlap length (LO) allowed achieving different strength advantages, up to 58% compared to spot-welded joints and 24% over bonded joints. The Finite Element Method (FEM) and Cohesive Zone Models (CZM) for damage growth were also tested in Abaqus® to evaluate this technique for strength prediction, showing accurate estimations for all kinds of joints.
Resumo:
Adhesive-bonding for the unions in multi-component structures is gaining momentum over welding, riveting and fastening. It is vital for the design of bonded structures the availability of accurate damage models, to minimize design costs and time to market. Cohesive Zone Models (CZM’s) have been used for fracture prediction in structures. The eXtended Finite Element Method (XFEM) is a recent improvement of the Finite Element Method (FEM) that relies on traction-separation laws similar to those of CZM’s but it allows the growth of discontinuities within bulk solids along an arbitrary path, by enriching degrees of freedom. This work proposes and validates a damage law to model crack propagation in a thin layer of a structural epoxy adhesive using the XFEM. The fracture toughness in pure mode I (GIc) and tensile cohesive strength (sn0) were defined by Double-Cantilever Beam (DCB) and bulk tensile tests, respectively, which permitted to build the damage law. The XFEM simulations of the DCB tests accurately matched the experimental load-displacement (P-d) curves, which validated the analysis procedure.
Resumo:
The main aims of the present study are simultaneously to relate the brazing parameters with: (i) the correspondent interfacial microstructure, (ii) the resultant mechanical properties and (iii) the electrochemical degradation behaviour of AISI 316 stainless steel/alumina brazed joints. Filler metals on such as Ag–26.5Cu–3Ti and Ag–34.5Cu–1.5Ti were used to produce the joints. Three different brazing temperatures (850, 900 and 950 °C), keeping a constant holding time of 20 min, were tested. The objective was to understand the influence of the brazing temperature on the final microstructure and properties of the joints. The mechanical properties of the metal/ceramic (M/C) joints were assessed from bond strength tests carried out using a shear solicitation loading scheme. The fracture surfaces were studied both morphologically and structurally using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The degradation behaviour of the M/C joints was assessed by means of electrochemical techniques. It was found that using a Ag–26.5Cu–3Ti brazing alloy and a brazing temperature of 850 °C, produces the best results in terms of bond strength, 234 ± 18 MPa. The mechanical properties obtained could be explained on the basis of the different compounds identified on the fracture surfaces by XRD. On the other hand, the use of the Ag–34.5Cu–1.5Ti brazing alloy and a brazing temperature of 850 °C produces the best results in terms of corrosion rates (lower corrosion current density), 0.76 ± 0.21 μA cm−2. Nevertheless, the joints produced at 850 °C using a Ag–26.5Cu–3Ti brazing alloy present the best compromise between mechanical properties and degradation behaviour, 234 ± 18 MPa and 1.26 ± 0.58 μA cm−2, respectively. The role of Ti diffusion is fundamental in terms of the final value achieved for the M/C bond strength. On the contrary, the Ag and Cu distribution along the brazed interface seem to play the most relevant role in the metal/ceramic joints electrochemical performance.
Resumo:
The structural integrity of multi-component structures is usually determined by the strength and durability of their unions. Adhesive bonding is often chosen over welding, riveting and bolting, due to the reduction of stress concentrations, reduced weight penalty and easy manufacturing, amongst other issues. In the past decades, the Finite Element Method (FEM) has been used for the simulation and strength prediction of bonded structures, by strength of materials or fracture mechanics-based criteria. Cohesive-zone models (CZMs) have already proved to be an effective tool in modelling damage growth, surpassing a few limitations of the aforementioned techniques. Despite this fact, they still suffer from the restriction of damage growth only at predefined growth paths. The eXtended Finite Element Method (XFEM) is a recent improvement of the FEM, developed to allow the growth of discontinuities within bulk solids along an arbitrary path, by enriching degrees of freedom with special displacement functions, thus overcoming the main restriction of CZMs. These two techniques were tested to simulate adhesively bonded single- and double-lap joints. The comparative evaluation of the two methods showed their capabilities and/or limitations for this specific purpose.