5 resultados para Määttä, Pentti

em Instituto Politécnico do Porto, Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oceans remain a major source of natural compounds with potential in pharmacology. In particular, during the last few decades, marine cyanobacteria have been in focus as producers of interesting bioactive compounds, especially for the treatment of cancer. In this study, the anticancer potential of extracts from twenty eight marine cyanobacteria strains, belonging to the underexplored picoplanktonic genera, Cyanobium, Synechocystis and Synechococcus, and the filamentous genera, Nodosilinea, Leptolyngbya, Pseudanabaena and Romeria, were assessed in eight human tumor cell lines. First, a crude extract was obtained by dichloromethane:methanol extraction, and from it, three fractions were separated in a Si column chromatography. The crude extract and fractions were tested in eight human cancer cell lines for cell viability/toxicity, accessed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and lactic dehydrogenase release (LDH) assays. Eight point nine percent of the strains revealed strong cytotoxicity; 17.8% showed moderate cytotoxicity, and 14.3% assays showed low toxicity. The results obtained revealed that the studied genera of marine cyanobacteria are a promising source of novel compounds with potential anticancer activity and highlight the interest in also exploring the smaller filamentous and picoplanktonic genera of cyanobacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introdução: Estudos anteriores em modelos tumorais de glioma e melanoma, tumores radiorresistentes, indicaram que a obesidade pode estar relacionada com um aumento do status oxidativo e com a diminuição da resistência à radiação. Como a Radioterapia é o tratamento frequentemente utilizado para esta patologia, propomo-nos, desta forma, a explorar a influência da obesidade em células de glioma, as BC3H1, e melanoma, B16F10, submetidas a Radioterapia, na presença de agentes oxidantes e antioxidantes, para o estudo da sua influência ao nível da viabilidade celular e do impacto do stress oxidativo. Métodos: As células BC3H1 e B16F10 foram tratadas com t-BOOH (150μM e 50 μM, respetivamente), TUDCA (25μM e 1μM, respetivamente) e com a mistura de t-BOOH+TUDCA em meio DMEM sem soro e meio condicionado (CM), a partir de adipócitos 3T3-L1. Em seguida, parte das células foram irradiadas com uma dose total de 2Gy. Posteriormente avaliou-se a viabilidade celular (teste MTT) e o stress oxidativo (teste TBARS, atividade da catalase, concentração da GSH, e status antioxidante total), às 4h e 12h. Resultados: Observou-se um aumento da capacidade antioxidante total das células irradiadas, comparativamente com as células não irradiadas. O meio condicionado reduziu o stress oxidativo nas BC3H1, ao mesmo tempo que reduziu a sua viabilidade celular. O TUDCA nas células incubadas com MC e submetidas a radioterapia, tendencialmente diminuiu a viabilidade celular, nas concertações em estudo. Discussão/Conclusão: O meio condicionado e a radioterapia, por si só, aumentam a resposta antioxidante total na célula, às 4h e às 12h. O TUDCA nas células incubadas com meio condicionado e submetidas a radioterapia, teve um comportamento citotóxico para as BC3H1, nas concentrações testadas. Revelando a necessidade de aprofundar os estudos da ação deste composto como agente radiossensibilizador, neste e noutros modelos celulares de carcinogénese.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cyanobacteria are known to be a rich source of metabolites with a variety of biological activities in different biological systems. In the present work, the bioactivity of aqueous and organic (methanolic and hexane) crude extracts of cyanobacteria isolated from estuarine ecosystems was studied using different bioassays. The assessment of DNA damage on the SOS gene repair region of mutant PQ37 strain of Escherichia coli was performed. Antiviral activity was evaluated against influenza virus, HRV-2, CVB3 and HSV-1 viruses using crystal violet dye uptake on HeLa, MDCK and GMK cell lines. Cytotoxicity evaluation was performed with L929 fibroblasts by MTT assay. Of a total of 18 cyanobacterial isolates studied, only the crude methanolic extract of LEGE 06078 proved to be genotoxic (IF > 1.5) in a dose-dependent manner and other four were putative candidates to induce DNA damage. Furthermore, the crude aqueous extract of LEGE 07085 showed anti- herpes type 1 activity (IC50 = 174.10 μg dry extract mL−1) while not presenting any cytotoxic activity against GMK cell lines. Of the 54 cyanobacterial extracts tested, only the crude methanolic and hexane ones showed impair on metabolic activity of L929 fibroblasts after long exposure (48–72 h). The inhibition of HSV-1 and the strong cytotoxicity against L929 cells observed emphasizes the importance of evaluating the impact of those estuarine cyanobacteria on aquatic ecosystem and on human health. The data also point out their potential application in HSV-1 treatment and pharmacological interest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fungi have been considered a potential source of natural anticancer drugs. However, studies on these organisms have mainly focused on compounds present in the sporocarp and mycelium. The aim of this study was to assess the anticancer potential of fungal spores using a bioassay-guided fractionation with cancer and normal cell lines. Crude extracts from spores of the basidiomycetous fungus Pisolithus tinctorius were prepared using five solvents/solvent mixtures in order to select the most effective crude extraction procedure. A dichloromethane/methanol (DCM/MeOH) mixture was found to produce the highest extraction yield, and this extract was fractionated into 11 fractions. Crude extracts and fractions were assayed for cytotoxicity in the human osteocarcinoma cell line MG63, the human breast carcinoma cell line T47D, the human colon adenocarcinoma cell line RKO, and the normal human brain capillary endothelial cell line hCMEC/D3. Cytotoxicity was assessed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) reduction assay. The results showed a reduction in cancer cell viability of approximately 95% with 4 of 11 fractions without a significant reduction in viability of hCMEC/D3 cells. Data demonstrated that spores of P. tinctorius might serve as an interesting source of compounds with potential anticancer properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During myocardial ischemia and reperfusion both purines and pyrimidines are released into the extracellular milieu, thus creating a signaling wave that propagates to neighboring cells via membrane-bound P2 purinoceptors activation. Cardiac fibroblasts (CF) are important players in heart remodeling, electrophysiological changes and hemodynamic alterations following myocardial infarction. Here, we investigated the role UTP on calcium signaling and proliferation of CF cultured from ventricles of adult rats. Co-expression of discoidin domain receptor 2 and -smooth muscle actin indicate that cultured CF are activated myofibroblasts. Intracellular calcium ([Ca2+]i) signals were monitored in cells loaded with Fluo-4 NW. CF proliferation was evaluated by the MTT assay. UTP and the selective P2Y4 agonist, MRS4062, caused a fast desensitizing [Ca2+]i rise originated from thapsigargin-sensitive internal stores, which partially declined to a plateau providing the existence of Ca2+ in the extracellular fluid. The biphasic [Ca2+]i response to UTP was attenuated respectively by P2Y4 blockers, like reactive blue-2 and suramin, and by the P2Y11 antagonist, NF340. UTP and the P2Y2 receptor agonist MRS2768 increased, whereas the selective P2Y11 agonist NF546 decreased, CF growth; MRS4062 was ineffective. Blockage of the P2Y11receptor or its coupling to adenylate cyclase boosted UTP-induced CF proliferation. Confocal microscopy and Western blot analysis confirmed the presence of P2Y2, P2Y4 and P2Y11 receptors. Data indicate that besides P2Y4 and P2Y2 receptors which are responsible for UTP-induced [Ca2+]i transients and growth of CF, respectively, synchronous activation of the previously unrecognized P2Y11 receptor may represent an important target for anti-fibrotic intervention in cardiac remodeling.