4 resultados para Lubrication

em Instituto Politécnico do Porto, Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tribological response of multilayer micro/nanocrystalline diamond coatings grown by the hot filament CVD technique is investigated. These multigrade systems were tailored to comprise a starting microcrystalline diamond (MCD) layer with high adhesion to a silicon nitride (Si3N4) ceramic substrate, and a top nanocrystalline diamond (NCD) layer with reduced surface roughness. Tribological tests were carried out with a reciprocating sliding configuration without lubrication. Such composite coatings exhibit a superior critical load before delamination (130–200 N), when compared to the mono- (60–100 N) and bilayer coatings (110 N), considering ∼10 µm thick films. Regarding the friction behaviour, a short-lived initial high friction coefficient was followed by low friction regimes (friction coefficients between 0.02 and 0.09) as a result of the polished surfaces tailored by the tribological solicitation. Very mild to mild wear regimes (wear coefficient values between 4.1×10−8 and 7.7×10−7 mm3 N−1 m−1) governed the wear performance of the self-mated multilayer coatings when subjected to high-load short-term tests (60–200 N; 2 h; 86 m) and medium-load endurance tests (60 N; 16 h; 691 m).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three different lubricating greases and their bleed and base oils were compared in terms of film thickness in a ball-on-disc test rig through optical interferometry. The theoretical values calculated according to Hamrock's equation are in close agreement with the base oil film thickness measurements, which validates the selected experimental methodology. The grease and bleed oil film thickness under fully flooded lubrication conditions presented quite similar behaviour and levels. Therefore, the grease film thickness under full film conditions might be predicted using their bleed oil properties, namely the viscosity and pressure-viscosity coefficient. The base and bleed oil lubricant parameter LP are proportional to the measured film thickness. A relationship between grease and the corresponding bleed oil film thickness was evidenced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reduction of the power loss generated in mechanical transmissions and the use of low friction biodegradable lubricants has been attracting considerable attention in recent times. Therefore, it is necessary to develop methods to test and evaluate the performance of such lubricants and compare them with conventional ones. In this sense, a Four-Ball Machine was modified allowing the test of rolling bearings. A 51107 thrust ball bearing was used to test two different greases and the corresponding base oils. Friction torque and operating temperatures were continuously monitored to quantify the power loss and the heat evacuation for each lubricant tested. Copyright © 2010 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thrust ball bearings lubricated with several different greases were tested on a modified Four-Ball Machine, where the Four-Ball arrangement was replaced by a bearing assembly. The friction torque and operating temperatures in a thrust ball bearing were measured during the tests. At the end of each test a grease sample was analyzed through ferrographic techniques in order to quantify and evaluate bearing wear. A rolling bearing friction torque model was used and the coefficient of friction in full film lubrication was determined for each grease, depending on the operating conditions. The experimental results obtained showed that grease formulation had a very significant influence on friction torque and operating temperature. The friction torque depends on the viscosity of the grease base oil, on its nature (mineral, ester, PAO, etc.), on the coefficient of friction in full film conditions, but also on the interaction between grease thickener and base oil, which affected contact replenishment and contact starvation, and thus influenced the friction torque.