30 resultados para Load profiles
em Instituto Politécnico do Porto, Portugal
Resumo:
With the electricity market liberalization, the distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity consumers. A fair insight on the consumers’ behavior will permit the definition of specific contract aspects based on the different consumption patterns. In order to form the different consumers’ classes, and find a set of representative consumption patterns we use electricity consumption data from a utility client’s database and two approaches: Two-step clustering algorithm and the WEACS approach based on evidence accumulation (EAC) for combining partitions in a clustering ensemble. While EAC uses a voting mechanism to produce a co-association matrix based on the pairwise associations obtained from N partitions and where each partition has equal weight in the combination process, the WEACS approach uses subsampling and weights differently the partitions. As a complementary step to the WEACS approach, we combine the partitions obtained in the WEACS approach with the ALL clustering ensemble construction method and we use the Ward Link algorithm to obtain the final data partition. The characterization of the obtained consumers’ clusters was performed using the C5.0 classification algorithm. Experiment results showed that the WEACS approach leads to better results than many other clustering approaches.
Resumo:
The present research paper presents five different clustering methods to identify typical load profiles of medium voltage (MV) electricity consumers. These methods are intended to be used in a smart grid environment to extract useful knowledge about customer’s behaviour. The obtained knowledge can be used to support a decision tool, not only for utilities but also for consumers. Load profiles can be used by the utilities to identify the aspects that cause system load peaks and enable the development of specific contracts with their customers. The framework presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partition, which is supported by cluster validity indices. The process ends with the analysis of the discovered knowledge. To validate the proposed framework, a case study with a real database of 208 MV consumers is used.
Resumo:
This paper consists in the characterization of medium voltage (MV) electric power consumers based on a data clustering approach. It is intended to identify typical load profiles by selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The best partition is selected using several cluster validity indices. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ behavior. The data-mining-based methodology presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partitions. To validate our approach, a case study with a real database of 1.022 MV consumers was used.
Resumo:
This paper presents the characterization of high voltage (HV) electric power consumers based on a data clustering approach. The typical load profiles (TLP) are obtained selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The choice of the best partition is supported using several cluster validity indices. The proposed data-mining (DM) based methodology, that includes all steps presented in the process of knowledge discovery in databases (KDD), presents an automatic data treatment application in order to preprocess the initial database in an automatic way, allowing time saving and better accuracy during this phase. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ consumption behavior. To validate our approach, a case study with a real database of 185 HV consumers was used.
Resumo:
This paper deals with the establishment of a characterization methodology of electric power profiles of medium voltage (MV) consumers. The characterization is supported on the data base knowledge discovery process (KDD). Data Mining techniques are used with the purpose of obtaining typical load profiles of MV customers and specific knowledge of their customers’ consumption habits. In order to form the different customers’ classes and to find a set of representative consumption patterns, a hierarchical clustering algorithm and a clustering ensemble combination approach (WEACS) are used. Taking into account the typical consumption profile of the class to which the customers belong, new tariff options were defined and new energy coefficients prices were proposed. Finally, and with the results obtained, the consequences that these will have in the interaction between customer and electric power suppliers are analyzed.
Resumo:
This paper consist in the establishment of a Virtual Producer/Consumer Agent (VPCA) in order to optimize the integrated management of distributed energy resources and to improve and control Demand Side Management DSM) and its aggregated loads. The paper presents the VPCA architecture and the proposed function-based organization to be used in order to coordinate the several generation technologies, the different load types and storage systems. This VPCA organization uses a frame work based on data mining techniques to characterize the costumers. The paper includes results of several experimental tests cases, using real data and taking into account electricity generation resources as well as consumption data.
Resumo:
A forte preocupação ambiental, nomeadamente a emissão de Gases com Efeito de Estufa (GEE), aliada à constante ameaça do esgotamento dos combustíveis de origem fóssil, leva à necessidade de consumir energia de forma mais eficiente. Neste sentido, surge a promoção da eficiência energética nos diversos sectores consumidores de energia em todo o Mundo. Sabendo que passamos mais de 80% do nosso tempo dentro de edifícios, e que cerca de 40% da energia mundial é consumida nos mesmos [ADENE], é importante operar no sentido de promover a utilização racional de energia e incentivar ao consumo eficiente da mesma nos edifícios. Apesar do esforço que tem sido realizado a nível nacional, no sentido de melhorar a eficiência energética em edifícios de serviços, através da implementação de legislação diversa e de vários programas de incentivo, existem ainda várias lacunas a serem colmatadas e muito trabalho a fazer nesse sentido. Por tudo isto, e principalmente por ter constantemente em mente premissas como “a energia mais barata é aquela que não se consome” ou “não podemos gerir aquilo que não medimos”, surgiu a ideia de realizar esta dissertação, onde inicialmente através de dados provenientes de telecontagem se desenvolve uma tentativa de padronização/tipificação do consumo eléctrico em seis edifícios de escritórios, identificando-se assim algumas situações anómalas em diversos diagramas de carga construídos. Relaciona-se também o consumo eléctrico dos seis edifícios com algumas variáveis exógenas, de modo a perceber a influência das mesmas no consumo eléctrico de cada edifício. Numa vertente mais prática, foram identificadas e quantificadas potenciais medidas de melhoria, comportamentais e técnicas, num dos edifícios em estudo, de modo a poder contribuir para a redução do consumo energético do mesmo. Espera-se que este trabalho, possa eventualmente constituir uma ajuda na caracterização de consumos e detecção de medidas de melhoria em edifícios de escritórios, alcançando a eficiência energética neste tipo de instalações e facilitando assim o trabalho de vários profissionais do sector. Pretende-se igualmente demonstrar a importância da eficiência energética na gestão do uso da energia eléctrica em edifícios, e efectuar um paralelo entre a energia economizada por meio da implementação de medidas/acções de uso racional e eficiente, com a redução da queima de combustíveis fosseis na geração de energia eléctrica e a sua consequente redução nas emissões de dióxido de carbono (CO2), com o objectivo final de melhorar a qualidade de vida no nosso planeta.
Resumo:
This paper presents an electricity medium voltage (MV) customer characterization framework supportedby knowledge discovery in database (KDD). The main idea is to identify typical load profiles (TLP) of MVconsumers and to develop a rule set for the automatic classification of new consumers. To achieve ourgoal a methodology is proposed consisting of several steps: data pre-processing; application of severalclustering algorithms to segment the daily load profiles; selection of the best partition, corresponding tothe best consumers’ segmentation, based on the assessments of several clustering validity indices; andfinally, a classification model is built based on the resulting clusters. To validate the proposed framework,a case study which includes a real database of MV consumers is performed.
Resumo:
With the current increase of energy resources prices and environmental concerns intelligent load management systems are gaining more and more importance. This paper concerns a SCADA House Intelligent Management (SHIM) system that includes an optimization module using deterministic and genetic algorithm approaches. SHIM undertakes contextual load management based on the characterization of each situation. SHIM considers available generation resources, load demand, supplier/market electricity price, and consumers’ constraints and preferences. The paper focus on the recently developed learning module which is based on artificial neural networks (ANN). The learning module allows the adjustment of users’ profiles along SHIM lifetime. A case study considering a system with fourteen discrete and four variable loads managed by a SHIM system during five consecutive similar weekends is presented.
Resumo:
This paper addresses the problem of energy resources management using modern metaheuristics approaches, namely Particle Swarm Optimization (PSO), New Particle Swarm Optimization (NPSO) and Evolutionary Particle Swarm Optimization (EPSO). The addressed problem in this research paper is intended for aggregators’ use operating in a smart grid context, dealing with Distributed Generation (DG), and gridable vehicles intelligently managed on a multi-period basis according to its users’ profiles and requirements. The aggregator can also purchase additional energy from external suppliers. The paper includes a case study considering a 30 kV distribution network with one substation, 180 buses and 90 load points. The distribution network in the case study considers intense penetration of DG, including 116 units from several technologies, and one external supplier. A scenario of 6000 EVs for the given network is simulated during 24 periods, corresponding to one day. The results of the application of the PSO approaches to this case study are discussed deep in the paper.
Resumo:
This paper proposes a simulated annealing (SA) approach to address energy resources management from the point of view of a virtual power player (VPP) operating in a smart grid. Distributed generation, demand response, and gridable vehicles are intelligently managed on a multiperiod basis according to V2G user´s profiles and requirements. Apart from using the aggregated resources, the VPP can also purchase additional energy from a set of external suppliers. The paper includes a case study for a 33 bus distribution network with 66 generators, 32 loads, and 1000 gridable vehicles. The results of the SA approach are compared with a methodology based on mixed-integer nonlinear programming. A variation of this method, using ac load flow, is also used and the results are compared with the SA solution using network simulation. The proposed SA approach proved to be able to obtain good solutions in low execution times, providing VPPs with suitable decision support for the management of a large number of distributed resources.
Fuzzy Monte Carlo mathematical model for load curtailment minimization in transmission power systems
Resumo:
This paper presents a methodology which is based on statistical failure and repair data of the transmission power system components and uses fuzzyprobabilistic modeling for system component outage parameters. Using statistical records allows developing the fuzzy membership functions of system component outage parameters. The proposed hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. A network contingency analysis to identify any overloading or voltage violation in the network is performed once obtained the system states by Monte Carlo simulation. This is followed by a remedial action algorithm, based on optimal power flow, to reschedule generations and alleviate constraint violations and, at the same time, to avoid any load curtailment, if possible, or, otherwise, to minimize the total load curtailment, for the states identified by the contingency analysis. In order to illustrate the application of the proposed methodology to a practical case, the paper will include a case study for the Reliability Test System (RTS) 1996 IEEE 24 BUS.
Resumo:
In the energy management of the isolated operation of small power system, the economic scheduling of the generation units is a crucial problem. Applying right timing can maximize the performance of the supply. The optimal operation of a wind turbine, a solar unit, a fuel cell and a storage battery is searched by a mixed-integer linear programming implemented in General Algebraic Modeling Systems (GAMS). A Virtual Power Producer (VPP) can optimal operate the generation units, assured the good functioning of equipment, including the maintenance, operation cost and the generation measurement and control. A central control at system allows a VPP to manage the optimal generation and their load control. The application of methodology to a real case study in Budapest Tech, demonstrates the effectiveness of this method to solve the optimal isolated dispatch of the DC micro-grid renewable energy park. The problem has been converged in 0.09 s and 30 iterations.
Resumo:
A supervisory control and data acquisition (SCADA) system is an integrated platform that incorporates several components and it has been applied in the field of power systems and several engineering applications to monitor, operate and control a lot of processes. In the future electrical networks, SCADA systems are essential for an intelligent management of resources like distributed generation and demand response, implemented in the smart grid context. This paper presents a SCADA system for a typical residential house. The application is implemented on MOVICON™11 software. The main objective is to manage the residential consumption, reducing or curtailing loads to keep the power consumption in or below a specified setpoint, imposed by the costumer and the generation availability.
Resumo:
Este trabalho surgiu do âmbito da Tese de Dissertação do Mestrado em Energias Sustentáveis do Instituto Superior de Engenharia do Porto, tendo o acompanhamento dos orientadores da empresa Laboratório Ecotermolab do Instituto de Soldadura e Qualidade e do Instituto Superior de Engenharia do Porto, de forma a garantir a linha traçada indo de acordo aos objectivos propostos. A presente tese abordou o estudo do impacto da influência do ar novo na climatização de edifícios, tendo como base de apoio à análise a simulação dinâmica do edifício em condições reais num programa adequado, acreditado pela norma ASHRAE 140-2004. Este trabalho pretendeu evidenciar qual o impacto da influência do ar novo na climatização de um edifício com a conjugação de vários factores, tais como, ocupação, actividades e padrões de utilização (horários), iluminação e equipamentos, estudando ainda a possibilidade do sistema funcionar em regime de “Free-Cooling”. O princípio partiu fundamentalmente por determinar até que ponto se pode climatizar recorrendo único e exclusivamente à introdução de ar novo em regime de “Free-Cooling”, através de um sistema tudo-ar de Volume de Ar Variável - VAV, sem o apoio de qualquer outro sistema de climatização auxiliar localizado no espaço, respeitando os caudais mínimos impostos pelo RSECE (Decreto-Lei 79/2006). Numa primeira fase foram identificados todos os dados relativos à determinação das cargas térmicas do edifício, tendo em conta todos os factores e contributos alusivos ao valor da carga térmica, tais como a transmissão de calor e seus constituintes, a iluminação, a ventilação, o uso de equipamentos e os níveis de ocupação. Consequentemente foram elaboradas diversas simulações dinâmicas com o recurso ao programa EnergyPlus integrado no DesignBuilder, conjugando variáveis desde as envolventes à própria arquitectura, perfis de utilização ocupacional, equipamentos e taxas de renovação de ar nos diferentes espaços do edifício em estudo. Obtiveram-se vários modelos de forma a promover um estudo comparativo e aprofundado que permitisse determinar o impacto do ar novo na climatização do edifício, perspectivando a capacidade funcional do sistema funcionar em regime de “Free-Cooling”. Deste modo, a análise e comparação dos dados obtidos permitiram chegar às seguintes conclusões: Tendo em consideração que para necessidades de arrefecimento bastante elevadas, o “Free-Cooling” diurno revelou-se pouco eficaz ou quase nulo, para o tipo de clima verificado em Portugal, pois o diferencial de temperatura existente entre o exterior e o interior não é suficiente de modo a tornar possível a remoção das cargas de forma a baixar a temperatura interior para o intervalo de conforto. Em relação ao “Free-Cooling” em horário nocturno ou pós-laboral, este revelou-se bem mais eficiente. Obtiveram-se prestações muito interessantes sobretudo durante as estações de aquecimento e meia-estação, tendo em consideração o facto de existir necessidades de arrefecimento mesmo durante a estação de aquecimento. Referente à ventilação nocturna, isto é, em períodos de madrugada e fecho do edifício, concluiu-se que tal contribui para um abaixamento do calor acumulado durante o dia nos materiais construtivos do edifício e que é libertado ou restituído posteriormente para os espaços em períodos mais tardios. De entre as seguintes variáveis, aumento de caudal de ar novo insuflado e o diferencial de temperatura existente entre o ar exterior e interior, ficou demonstrado que este último teria maior peso contributivo na remoção do calor. Por fim, é ponto assente que de um modo geral, um sistema de climatização será sempre indispensável devido a cargas internas elevadas, requisitos interiores de temperatura e humidade, sendo no entanto aconselhado o “Free- Cooling” como um opção viável a incorporar na solução de climatização, de forma a promover o arrefecimento natural, a redução do consumo energético e a introdução activa de ar novo.