77 resultados para Linked Data
em Instituto Politécnico do Porto, Portugal
Resumo:
Mestrado em Engenharia Informática - Área de Especialização em Tecnologias do Conhecimento e Decisão
Resumo:
A Teia Mundial (Web) foi prevista como uma rede de documentos de hipertexto interligados de forma a criar uma espaço de informação onde humanos e máquinas poderiam comunicar. No entanto, a informação contida na Web tradicional foi/é armazenada de forma não estruturada o que leva a que apenas os humanos a possam consumir convenientemente. Consequentemente, a procura de informações na Web sintáctica é uma tarefa principalmente executada pelos humanos e nesse sentido nem sempre é fácil de concretizar. Neste contexto, tornou-se essencial a evolução para uma Web mais estruturada e mais significativa onde é dado significado bem definido à informação de forma a permitir a cooperação entre humanos e máquinas. Esta Web é usualmente referida como Web Semântica. Além disso, a Web Semântica é totalmente alcançável apenas se os dados de diferentes fontes forem ligados criando assim um repositório de Dados Abertos Ligados (LOD). Com o aparecimento de uma nova Web de Dados (Abertos) Ligados (i.e. a Web Semântica), novas oportunidades e desafios surgiram. Pergunta Resposta (QA) sobre informação semântica é actualmente uma área de investigação activa que tenta tirar vantagens do uso das tecnologias ligadas à Web Semântica para melhorar a tarefa de responder a questões. O principal objectivo do projecto World Search passa por explorar a Web Semântica para criar mecanismos que suportem os utilizadores de domínios de aplicação específicos a responder a questões complexas com base em dados oriundos de diferentes repositórios. No entanto, a avaliação feita ao estado da arte permite concluir que as aplicações existentes não suportam os utilizadores na resposta a questões complexas. Nesse sentido, o trabalho desenvolvido neste documento foca-se em estudar/desenvolver metodologias/processos que permitam ajudar os utilizadores a encontrar respostas exactas/corretas para questões complexas que não podem ser respondidas fazendo uso dos sistemas tradicionais. Tal inclui: (i) Ultrapassar a dificuldade dos utilizadores visionarem o esquema subjacente aos repositórios de conhecimento; (ii) Fazer a ponte entre a linguagem natural expressa pelos utilizadores e a linguagem (formal) entendível pelos repositórios; (iii) Processar e retornar informações relevantes que respondem apropriadamente às questões dos utilizadores. Para esse efeito, são identificadas um conjunto de funcionalidades que são consideradas necessárias para suportar o utilizador na resposta a questões complexas. É também fornecida uma descrição formal dessas funcionalidades. A proposta é materializada num protótipo que implementa as funcionalidades previamente descritas. As experiências realizadas com o protótipo desenvolvido demonstram que os utilizadores efectivamente beneficiam das funcionalidades apresentadas: ▪ Pois estas permitem que os utilizadores naveguem eficientemente sobre os repositórios de informação; ▪ O fosso entre as conceptualizações dos diferentes intervenientes é minimizado; ▪ Os utilizadores conseguem responder a questões complexas que não conseguiam responder com os sistemas tradicionais. Em suma, este documento apresenta uma proposta que comprovadamente permite, de forma orientada pelo utilizador, responder a questões complexas em repositórios semiestruturados.
Resumo:
Nearest neighbour collaborative filtering (NNCF) algorithms are commonly used in multimedia recommender systems to suggest media items based on the ratings of users with similar preferences. However, the prediction accuracy of NNCF algorithms is affected by the reduced number of items – the subset of items co-rated by both users – typically used to determine the similarity between pairs of users. In this paper, we propose a different approach, which substantially enhances the accuracy of the neighbour selection process – a user-based CF (UbCF) with semantic neighbour discovery (SND). Our neighbour discovery methodology, which assesses pairs of users by taking into account all the items rated at least by one of the users instead of just the set of co-rated items, semantically enriches this enlarged set of items using linked data and, finally, applies the Collinearity and Proximity Similarity metric (CPS), which combines the cosine similarity with Chebyschev distance dissimilarity metric. We tested the proposed SND against the Pearson Correlation neighbour discovery algorithm off-line, using the HetRec data set, and the results show a clear improvement in terms of accuracy and execution time for the predicted recommendations.
Resumo:
POSTDATA is a 5 year's European Research Council (ERC) Starting Grant Project that started in May 2016 and is hosted by the Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain. The context of the project is the corpora of European Poetry (EP), with a special focus on poetic materials from different languages and literary traditions. POSTDATA aims to offer a standardized model in the philological field and a metadata application profile (MAP) for EP in order to build a common classification of all these poetic materials. The information of Spanish, Italian and French repertoires will be published in the Linked Open Data (LOD) ecosystem. Later we expect to extend the model to include additional corpora. There are a number of Web Based Information Systems in Europe with repertoires of poems available to human consumption but not in an appropriate condition to be accessible and reusable by the Semantic Web. These systems are not interoperable; they are in fact locked in their databases and proprietary software, not suitable to be linked in the Semantic Web. A way to make this data interoperable is to develop a MAP in order to be able to publish this data available in the LOD ecosystem, and also to publish new data that will be created and modeled based on this MAP. To create a common data model for EP is not simple since the existent data models are based on conceptualizations and terminology belonging to their own poetical traditions and each tradition has developed an idiosyncratic analytical terminology in a different and independent way for years. The result of this uncoordinated evolution is a set of varied terminologies to explain analogous metrical phenomena through the different poetic systems whose correspondences have been hardly studied – see examples in González-Blanco & Rodríguez (2014a and b). This work has to be done by domain experts before the modeling actually starts. On the other hand, the development of a MAP is a complex task though it is imperative to follow a method for this development. The last years Curado Malta & Baptista (2012, 2013a, 2013b) have been studying the development of MAP's in a Design Science Research (DSR) methodological process in order to define a method for the development of MAPs (see Curado Malta (2014)). The output of this DSR process was a first version of a method for the development of Metadata Application Profiles (Me4MAP) (paper to be published). The DSR process is now in the validation phase of the Relevance Cycle to validate Me4MAP. The development of this MAP for poetry will follow the guidelines of Me4MAP and this development will be used to do the validation of Me4MAP. The final goal of the POSTDATA project is: i) to be able to publish all the data locked in the WIS, in LOD, where any agent interested will be able to build applications over the data in order to serve final users; ii) to build a Web platform where: a) researchers, students and other final users interested in EP will be able to access poems (and their analyses) of all databases; b) researchers, students and other final users will be able to upload poems, the digitalized images of manuscripts, and fill in the information concerning the analysis of the poem, collaboratively contributing to a LOD dataset of poetry.
Resumo:
The emergence of new business models, namely, the establishment of partnerships between organizations, the chance that companies have of adding existing data on the web, especially in the semantic web, to their information, led to the emphasis on some problems existing in databases, particularly related to data quality. Poor data can result in loss of competitiveness of the organizations holding these data, and may even lead to their disappearance, since many of their decision-making processes are based on these data. For this reason, data cleaning is essential. Current approaches to solve these problems are closely linked to database schemas and specific domains. In order that data cleaning can be used in different repositories, it is necessary for computer systems to understand these data, i.e., an associated semantic is needed. The solution presented in this paper includes the use of ontologies: (i) for the specification of data cleaning operations and, (ii) as a way of solving the semantic heterogeneity problems of data stored in different sources. With data cleaning operations defined at a conceptual level and existing mappings between domain ontologies and an ontology that results from a database, they may be instantiated and proposed to the expert/specialist to be executed over that database, thus enabling their interoperability.
Resumo:
Esta dissertação apresenta uma proposta de sistema capaz de preencher a lacuna entre documentos legislativos em formato PDF e documentos legislativos em formato aberto. O objetivo principal é mapear o conhecimento presente nesses documentos de maneira a representar essa coleção como informação interligada. O sistema é composto por vários componentes responsáveis pela execução de três fases propostas: extração de dados, organização de conhecimento, acesso à informação. A primeira fase propõe uma abordagem à extração de estrutura, texto e entidades de documentos PDF de maneira a obter a informação desejada, de acordo com a parametrização do utilizador. Esta abordagem usa dois métodos de extração diferentes, de acordo com as duas fases de processamento de documentos – análise de documento e compreensão de documento. O critério utilizado para agrupar objetos de texto é a fonte usada nos objetos de texto de acordo com a sua definição no código de fonte (Content Stream) do PDF. A abordagem está dividida em três partes: análise de documento, compreensão de documento e conjunção. A primeira parte da abordagem trata da extração de segmentos de texto, adotando uma abordagem geométrica. O resultado é uma lista de linhas do texto do documento; a segunda parte trata de agrupar os objetos de texto de acordo com o critério estipulado, produzindo um documento XML com o resultado dessa extração; a terceira e última fase junta os resultados das duas fases anteriores e aplica regras estruturais e lógicas no sentido de obter o documento XML final. A segunda fase propõe uma ontologia no domínio legal capaz de organizar a informação extraída pelo processo de extração da primeira fase. Também é responsável pelo processo de indexação do texto dos documentos. A ontologia proposta apresenta três características: pequena, interoperável e partilhável. A primeira característica está relacionada com o facto da ontologia não estar focada na descrição pormenorizada dos conceitos presentes, propondo uma descrição mais abstrata das entidades presentes; a segunda característica é incorporada devido à necessidade de interoperabilidade com outras ontologias do domínio legal, mas também com as ontologias padrão que são utilizadas geralmente; a terceira característica é definida no sentido de permitir que o conhecimento traduzido, segundo a ontologia proposta, seja independente de vários fatores, tais como o país, a língua ou a jurisdição. A terceira fase corresponde a uma resposta à questão do acesso e reutilização do conhecimento por utilizadores externos ao sistema através do desenvolvimento dum Web Service. Este componente permite o acesso à informação através da disponibilização de um grupo de recursos disponíveis a atores externos que desejem aceder à informação. O Web Service desenvolvido utiliza a arquitetura REST. Uma aplicação móvel Android também foi desenvolvida de maneira a providenciar visualizações dos pedidos de informação. O resultado final é então o desenvolvimento de um sistema capaz de transformar coleções de documentos em formato PDF para coleções em formato aberto de maneira a permitir o acesso e reutilização por outros utilizadores. Este sistema responde diretamente às questões da comunidade de dados abertos e de Governos, que possuem muitas coleções deste tipo, para as quais não existe a capacidade de raciocinar sobre a informação contida, e transformá-la em dados que os cidadãos e os profissionais possam visualizar e utilizar.
Resumo:
This paper presents the creation and development of technological schools directly linked to the business community and to higher public education. Establishing themselves as the key interface between the two sectors they make a signigicant contribution by having a greater competitive edge when faced with increasing competition in the tradional markets. The development of new business strategies supported by references of excellence, quality and competitiveness also provides a good link between the estalishment of partnerships aiming at the qualification of education boards at a medium level between the technological school and higher education with a technological foundation. We present a case study as an example depicting the success of Escola Tecnológica de Vale de Cambra.
Resumo:
Orientador Prof. Dr. João Domingues Costa
Resumo:
The main purpose of this study was to examine the applicability of geostatistical modeling to obtain valuable information for assessing the environmental impact of sewage outfall discharges. The data set used was obtained in a monitoring campaign to S. Jacinto outfall, located off the Portuguese west coast near Aveiro region, using an AUV. The Matheron’s classical estimator was used the compute the experimental semivariogram which was fitted to three theoretical models: spherical, exponential and gaussian. The cross-validation procedure suggested the best semivariogram model and ordinary kriging was used to obtain the predictions of salinity at unknown locations. The generated map shows clearly the plume dispersion in the studied area, indicating that the effluent does not reach the near by beaches. Our study suggests that an optimal design for the AUV sampling trajectory from a geostatistical prediction point of view, can help to compute more precise predictions and hence to quantify more accurately dilution. Moreover, since accurate measurements of plume’s dilution are rare, these studies might be very helpful in the future for validation of dispersion models.
Resumo:
Business Intelligence (BI) is one emergent area of the Decision Support Systems (DSS) discipline. Over the last years, the evolution in this area has been considerable. Similarly, in the last years, there has been a huge growth and consolidation of the Data Mining (DM) field. DM is being used with success in BI systems, but a truly DM integration with BI is lacking. Therefore, a lack of an effective usage of DM in BI can be found in some BI systems. An architecture that pretends to conduct to an effective usage of DM in BI is presented.
Resumo:
Revista Fiscal Maio 2006
Resumo:
This paper deals with the establishment of a characterization methodology of electric power profiles of medium voltage (MV) consumers. The characterization is supported on the data base knowledge discovery process (KDD). Data Mining techniques are used with the purpose of obtaining typical load profiles of MV customers and specific knowledge of their customers’ consumption habits. In order to form the different customers’ classes and to find a set of representative consumption patterns, a hierarchical clustering algorithm and a clustering ensemble combination approach (WEACS) are used. Taking into account the typical consumption profile of the class to which the customers belong, new tariff options were defined and new energy coefficients prices were proposed. Finally, and with the results obtained, the consequences that these will have in the interaction between customer and electric power suppliers are analyzed.
Resumo:
The introduction of Electric Vehicles (EVs) together with the implementation of smart grids will raise new challenges to power system operators. This paper proposes a demand response program for electric vehicle users which provides the network operator with another useful resource that consists in reducing vehicles charging necessities. This demand response program enables vehicle users to get some profit by agreeing to reduce their travel necessities and minimum battery level requirements on a given period. To support network operator actions, the amount of demand response usage can be estimated using data mining techniques applied to a database containing a large set of operation scenarios. The paper includes a case study based on simulated operation scenarios that consider different operation conditions, e.g. available renewable generation, and considering a diversity of distributed resources and electric vehicles with vehicle-to-grid capacity and demand response capacity in a 33 bus distribution network.
Resumo:
The study of electricity markets operation has been gaining an increasing importance in last years, as result of the new challenges that the electricity markets restructuring produced. This restructuring increased the competitiveness of the market, but with it its complexity. The growing complexity and unpredictability of the market’s evolution consequently increases the decision making difficulty. Therefore, the intervenient entities are forced to rethink their behaviour and market strategies. Currently, lots of information concerning electricity markets is available. These data, concerning innumerous regards of electricity markets operation, is accessible free of charge, and it is essential for understanding and suitably modelling electricity markets. This paper proposes a tool which is able to handle, store and dynamically update data. The development of the proposed tool is expected to be of great importance to improve the comprehension of electricity markets and the interactions among the involved entities.
Resumo:
This paper describes a methodology that was developed for the classification of Medium Voltage (MV) electricity customers. Starting from a sample of data bases, resulting from a monitoring campaign, Data Mining (DM) techniques are used in order to discover a set of a MV consumer typical load profile and, therefore, to extract knowledge regarding to the electric energy consumption patterns. In first stage, it was applied several hierarchical clustering algorithms and compared the clustering performance among them using adequacy measures. In second stage, a classification model was developed in order to allow classifying new consumers in one of the obtained clusters that had resulted from the previously process. Finally, the interpretation of the discovered knowledge are presented and discussed.