4 resultados para Library automation
em Instituto Politécnico do Porto, Portugal
Resumo:
A definition of medium voltage (MV) load diagrams was made, based on the data base knowledge discovery process. Clustering techniques were used as support for the agents of the electric power retail markets to obtain specific knowledge of their customers’ consumption habits. Each customer class resulting from the clustering operation is represented by its load diagram. The Two-step clustering algorithm and the WEACS approach based on evidence accumulation (EAC) were applied to an electricity consumption data from a utility client’s database in order to form the customer’s classes and to find a set of representative consumption patterns. The WEACS approach is a clustering ensemble combination approach that uses subsampling and that weights differently the partitions in the co-association matrix. As a complementary step to the WEACS approach, all the final data partitions produced by the different variations of the method are combined and the Ward Link algorithm is used to obtain the final data partition. Experiment results showed that WEACS approach led to better accuracy than many other clustering approaches. In this paper the WEACS approach separates better the customer’s population than Two-step clustering algorithm.
Resumo:
A navegação e a interpretação do meio envolvente por veículos autónomos em ambientes não estruturados continua a ser um grande desafio na actualidade. Sebastian Thrun, descreve em [Thr02], que o problema do mapeamento em sistemas robóticos é o da aquisição de um modelo espacial do meio envolvente do robô. Neste contexto, a integração de sistemas sensoriais em plataformas robóticas, que permitam a construção de mapas do mundo que as rodeia é de extrema importância. A informação recolhida desses dados pode ser interpretada, tendo aplicabilidade em tarefas de localização, navegação e manipulação de objectos. Até à bem pouco tempo, a generalidade dos sistemas robóticos que realizavam tarefas de mapeamento ou Simultaneous Localization And Mapping (SLAM), utilizavam dispositivos do tipo laser rangefinders e câmaras stereo. Estes equipamentos, para além de serem dispendiosos, fornecem apenas informação bidimensional, recolhidas através de cortes transversais 2D, no caso dos rangefinders. O paradigma deste tipo de tecnologia mudou consideravelmente, com o lançamento no mercado de câmaras RGB-D, como a desenvolvida pela PrimeSense TM e o subsequente lançamento da Kinect, pela Microsoft R para a Xbox 360 no final de 2010. A qualidade do sensor de profundidade, dada a natureza de baixo custo e a sua capacidade de aquisição de dados em tempo real, é incontornável, fazendo com que o sensor se tornasse instantaneamente popular entre pesquisadores e entusiastas. Este avanço tecnológico deu origem a várias ferramentas de desenvolvimento e interacção humana com este tipo de sensor, como por exemplo a Point Cloud Library [RC11] (PCL). Esta ferramenta tem como objectivo fornecer suporte para todos os blocos de construção comuns que uma aplicação 3D necessita, dando especial ênfase ao processamento de nuvens de pontos de n dimensões adquiridas a partir de câmaras RGB-D, bem como scanners laser, câmaras Time-of-Flight ou câmaras stereo. Neste contexto, é realizada nesta dissertação, a avaliação e comparação de alguns dos módulos e métodos constituintes da biblioteca PCL, para a resolução de problemas inerentes à construção e interpretação de mapas, em ambientes indoor não estruturados, utilizando os dados provenientes da Kinect. A partir desta avaliação, é proposta uma arquitectura de sistema que sistematiza o registo de nuvens de pontos, correspondentes a vistas parciais do mundo, num modelo global consistente. Os resultados da avaliação realizada à biblioteca PCL atestam a sua viabilidade, para a resolução dos problemas propostos. Prova da sua viabilidade, são os resultados práticos obtidos, da implementação da arquitectura de sistema proposta, que apresenta resultados de desempenho interessantes, como também boas perspectivas de integração deste tipo de conceitos e tecnologia em plataformas robóticas desenvolvidas no âmbito de projectos do Laboratório de Sistemas Autónomos (LSA).
Integration of an automatic storage and retrieval system (ASRS) in a discrete-part automation system
Resumo:
This technical report describes the work carried out in a project within the ERASMUS programme. The objective of this project was the Integration of an Automatic Warehouse in a Discrete-Part Automation System. The discrete-part automation system located at the LASCRI (Critical Systems) laboratory at ISEP was extended with automatic storage and retrieval of the manufacturing parts, through the integration of an automatic warehouse and an automatic guided vehicle (AGV).
Resumo:
This paper proposes and reports the development of an open source solution for the integrated management of Infrastructure as a Service (IaaS) cloud computing resources, through the use of a common API taxonomy, to incorporate open source and proprietary platforms. This research included two surveys on open source IaaS platforms (OpenNebula, OpenStack and CloudStack) and a proprietary platform (Parallels Automation for Cloud Infrastructure - PACI) as well as on IaaS abstraction solutions (jClouds, Libcloud and Deltacloud), followed by a thorough comparison to determine the best approach. The adopted implementation reuses the Apache Deltacloud open source abstraction framework, which relies on the development of software driver modules to interface with different IaaS platforms, and involved the development of a new Deltacloud driver for PACI. The resulting interoperable solution successfully incorporates OpenNebula, OpenStack (reuses pre-existing drivers) and PACI (includes the developed Deltacloud PACI driver) nodes and provides a Web dashboard and a Representational State Transfer (REST) interface library. The results of the exchanged data payload and time response tests performed are presented and discussed. The conclusions show that open source abstraction tools like Deltacloud allow the modular and integrated management of IaaS platforms (open source and proprietary), introduce relevant time and negligible data overheads and, as a result, can be adopted by Small and Medium-sized Enterprise (SME) cloud providers to circumvent the vendor lock-in problem whenever service response time is not critical.