29 resultados para Java technologies
em Instituto Politécnico do Porto, Portugal
Resumo:
As the complexity of embedded systems increases, multiple services have to compete for the limited resources of a single device. This situation is particularly critical for small embedded devices used in consumer electronics, telecommunication, industrial automation, or automotive systems. In fact, in order to satisfy a set of constraints related to weight, space, and energy consumption, these systems are typically built using microprocessors with lower processing power and limited resources. The CooperatES framework has recently been proposed to tackle these challenges, allowing resource constrained devices to collectively execute services with their neighbours in order to fulfil the complex Quality of Service (QoS) constraints imposed by users and applications. In order to demonstrate the framework's concepts, a prototype is being implemented in the Android platform. This paper discusses key challenges that must be addressed and possible directions to incorporate the desired real-time behaviour in Android.
Resumo:
These are the proceedings for the eighth national conference on XML, its Associated Technologies and its Applications (XATA'2010). The paper selection resulted in 33% of papers accepted as full papers, and 33% of papers accepted as short papers. While these two types of papers were distinguish during the conference, and they had different talk duration, they all had the same limit of 12 pages. We are happy that the selected papers focus both aspects of the conference: XML technologies, and XML applications. In the first group we can include the articles on parsing and transformation technologies, like “Processing XML: a rewriting system approach", “Visual Programming of XSLT from examples", “A Refactoring Model for XML Documents", “A Performance based Approach for Processing Large XML Files in Multicore Machines", “XML to paper publishing with manual intervention" and “Parsing XML Documents in Java using Annotations". XML-core related papers are also available, focusing XML tools testing on “Test::XML::Generator: Generating XML for Unit Testing" and “XML Archive for Testing: a benchmark for GuessXQ". XML as the base for application development is also present, being discussed on different areas, like “Web Service for Interactive Products and Orders Configuration", “XML Description for Automata Manipulations", “Integration of repositories in Moodle", “XML, Annotations and Database: a Comparative Study of Metadata Definition Strategies for Frameworks", “CardioML: Integrating Personal Cardiac Information for Ubiquous Diagnosis and Analysis", “A Semantic Representation of Users Emotions when Watching Videos" and “Integrating SVG and SMIL in DAISY DTB production to enhance the contents accessibility in the Open Library for Higher Education". The wide spread of subjects makes us believe that for the time being XML is here to stay what enhances the importance of gathering this community to discuss related science and technology. Small conferences are traversing a bad period. Authors look for impact and numbers and only submit their works to big conferences sponsored by the right institutions. However the group of people behind this conference still believes that spaces like this should be preserved and maintained. This 8th gathering marks the beginning of a new cycle. We know who we are, what is our identity and we will keep working to preserve that. We hope the publication containing the works of this year's edition will catch the same attention and interest of the previous editions and above all that this publication helps in some other's work. Finally, we would like to thank all authors for their work and interest in the conference, and to the scientific committee members for their review work.
Resumo:
7th Mediterranean Conference on Information Systems, MCIS 2012, Guimaraes, Portugal, September 8-10, 2012, Proceedings Series: Lecture Notes in Business Information Processing, Vol. 129
Resumo:
The large increase of renewable energy sources and Distributed Generation (DG) of electricity gives place to the Virtual Power Producer (VPP) concept. VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets. One of the most important tasks of a VPP is the conjugation of technologies to obtain a consistent set of associated producers and allow them to operate in the electric market. This paper presents some characteristics regarding already existent technologies and relevant aspects for producers and for VPP.
Resumo:
This paper presents a new architecture for the MASCEM, a multi-agent electricity market simulator. This is implemented in a Prolog which is integrated in the JAVA program by using the LPA Win-Prolog Intelligence Server (IS) provides a DLL interface between Win-Prolog and other applications. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Producers (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets.
Resumo:
Electrical activity is extremely broad and distinct, requiring by one hand, a deep knowledge on rules, regulations, materials, equipments, technical solutions and technologies and assistance in several areas, as electrical equipment, telecommunications, security and efficiency and rational use of energy, on the other hand, also requires other skills, depending on the specific projects to be implemented, being this knowledge a characteristic that belongs to the professionals with relevant experience, in terms of complexity and specific projects that were made.
Resumo:
Over time, XML markup language has acquired a considerable importance in applications development, standards definition and in the representation of large volumes of data, such as databases. Today, processing XML documents in a short period of time is a critical activity in a large range of applications, which imposes choosing the most appropriate mechanism to parse XML documents quickly and efficiently. When using a programming language for XML processing, such as Java, it becomes necessary to use effective mechanisms, e.g. APIs, which allow reading and processing of large documents in appropriated manners. This paper presents a performance study of the main existing Java APIs that deal with XML documents, in order to identify the most suitable one for processing large XML files
Resumo:
Over time, XML markup language has acquired a considerable importance in applications development, standards definition and in the representation of large volumes of data, such as databases. Today, processing XML documents in a short period of time is a critical activity in a large range of applications, which imposes choosing the most appropriate mechanism to parse XML documents quickly and efficiently. When using a programming language for XML processing, such as Java, it becomes necessary to use effective mechanisms, e.g. APIs, which allow reading and processing of large documents in appropriated manners. This paper presents a performance study of the main existing Java APIs that deal with XML documents, in order to identify the most suitable one for processing large XML files.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores. Área de Especialização de Telecomunicações.
Resumo:
Este trabalho é uma parte do tema global “Suporte à Computação Paralela e Distribuída em Java”, também tema da tese de Daniel Barciela no mestrado de Engenharia Informática do Instituto Superior de Engenharia do Porto. O seu objetivo principal consiste na definição/criação da interface com o programador, assim como também abrange a forma como os nós comunicam e cooperam entre si para a execução de determinadas tarefas, de modo a atingirem um único objetivo global. No âmbito desta dissertação foi realizado um estudo prévio relativamente aos modelos teóricos referentes à computação paralela, assim como também foram analisadas linguagens e frameworks que fornecem suporte a este mesmo tipo de computação. Este estudo teve como principal objetivo a análise da forma como estes modelos e linguagens permitem ao programador expressar o processamento paralelo no desenvolvimento das aplicações. Como resultado desta dissertação surgiu a framework denominada Distributed Parallel Framework for Java (DPF4j), cujo objetivo principal é fornecer aos programadores o suporte para o desenvolvimento de aplicações paralelas e distribuídas. Esta framework foi desenvolvida na linguagem Java. Esta dissertação contempla a parte referente à interface de programação e a toda a comunicação entre nós cooperantes da framework DPF4j. Por fim, foi demonstrado através dos testes realizados que a DPF4j, apesar de ser ainda um protótipo, já demonstra ter uma performance superior a outras frameworks e linguagens que possuem os mesmos objetivos.
Resumo:
In the past few years the so-called gadgets like cellular phones, personal data assistants and digital cameras are more widespread even with less technological aware users. However, for several reasons, the factory-floor itself seems to be hermetic to this changes ... After the fieldbus revolution, the factory-floor has seen an increased use of more and more powerful programmable logic controllers and user interfaces but the way they are used remains almost the same. We believe that new user-computer interaction techniques including multimedia and augmented rcaliry combined with now affordable technologies like wearable computers and wireless networks can change the way the factory personal works together with the roachines and the information system on the factory-floor. This new age is already starting with innovative uses of communication networks on the factory-floor either using "standard" networks or enhancing industrial networks with multimedia and wireless capabilities.
Resumo:
When exploring a virtual environment, realism depends mainly on two factors: realistic images and real-time feedback (motions, behaviour etc.). In this context, photo realism and physical validity of computer generated images required by emerging applications, such as advanced e-commerce, still impose major challenges in the area of rendering research whereas the complexity of lighting phenomena further requires powerful and predictable computing if time constraints must be attained. In this technical report we address the state-of-the-art on rendering, trying to put the focus on approaches, techniques and technologies that might enable real-time interactive web-based clientserver rendering systems. The focus is on the end-systems and not the networking technologies used to interconnect client(s) and server(s).
Resumo:
Finding the optimal value for a problem is usual in many areas of knowledge where in many cases it is needed to solve Nonlinear Optimization Problems. For some of those problems it is not possible to determine the expression for its objective function and/or its constraints, they are the result of experimental procedures, might be non-smooth, among other reasons. To solve such problems it was implemented an API contained methods to solve both constrained and unconstrained problems. This API was developed to be used either locally on the computer where the application is being executed or remotely on a server. To obtain the maximum flexibility both from the programmers’ and users’ points of view, problems can be defined as a Java class (because this API was developed in Java) or as a simple text input that is sent to the API. For this last one to be possible it was also implemented on the API an expression evaluator. One of the drawbacks of this expression evaluator is that it is slower than the Java native code. In this paper it is presented a solution that combines both options: the problem can be expressed at run-time as a string of chars that are converted to Java code, compiled and loaded dynamically. To wide the target audience of the API, this new expression evaluator is also compatible with the AMPL format.
Resumo:
The interest in the development of climbing robots has grown rapidly in the last years. Climbing robots are useful devices that can be adopted in a variety of applications, such as maintenance and inspection in the process and construction industries. These systems are mainly adopted in places where direct access by a human operator is very expensive, because of the need for scaffolding, or very dangerous, due to the presence of an hostile environment. The main motivations are to increase the operation efficiency, by eliminating the costly assembly of scaffolding, or to protect human health and safety in hazardous tasks. Several climbing robots have already been developed, and other are under development, for applications ranging from cleaning to inspection of difficult to reach constructions. A wall climbing robot should not only be light, but also have large payload, so that it may reduce excessive adhesion forces and carry instrumentations during navigation. These machines should be capable of travelling over different types of surfaces, with different inclinations, such as floors, walls, or ceilings, and to walk between such surfaces (Elliot et al. (2006); Sattar et al. (2002)). Furthermore, they should be able of adapting and reconfiguring for various environment conditions and to be self-contained. Up to now, considerable research was devoted to these machines and various types of experimental models were already proposed (according to Chen et al. (2006), over 200 prototypes aimed at such applications had been developed in the world by the year 2006). However, we have to notice that the application of climbing robots is still limited. Apart from a couple successful industrialized products, most are only prototypes and few of them can be found in common use due to unsatisfactory performance in on-site tests (regarding aspects such as their speed, cost and reliability). Chen et al. (2006) present the main design problems affecting the system performance of climbing robots and also suggest solutions to these problems. The major two issues in the design of wall climbing robots are their locomotion and adhesion methods. With respect to the locomotion type, four types are often considered: the crawler, the wheeled, the legged and the propulsion robots. Although the crawler type is able to move relatively faster, it is not adequate to be applied in rough environments. On the other hand, the legged type easily copes with obstacles found in the environment, whereas generally its speed is lower and requires complex control systems. Regarding the adhesion to the surface, the robots should be able to produce a secure gripping force using a light-weight mechanism. The adhesion method is generally classified into four groups: suction force, magnetic, gripping to the surface and thrust force type. Nevertheless, recently new methods for assuring the adhesion, based in biological findings, were proposed. The vacuum type principle is light and easy to control though it presents the problem of supplying compressed air. An alternative, with costs in terms of weight, is the adoption of a vacuum pump. The magnetic type principle implies heavy actuators and is used only for ferromagnetic surfaces. The thrust force type robots make use of the forces developed by thrusters to adhere to the surfaces, but are used in very restricted and specific applications. Bearing these facts in mind, this chapter presents a survey of different applications and technologies adopted for the implementation of climbing robots locomotion and adhesion to surfaces, focusing on the new technologies that are recently being developed to fulfill these objectives. The chapter is organized as follows. Section two presents several applications of climbing robots. Sections three and four present the main locomotion principles, and the main "conventional" technologies for adhering to surfaces, respectively. Section five describes recent biological inspired technologies for robot adhesion to surfaces. Section six introduces several new architectures for climbing robots. Finally, section seven outlines the main conclusions.