17 resultados para Ion sensing
em Instituto Politécnico do Porto, Portugal
Resumo:
As a result of the stressful conditions in aquaculture facilities there is a high risk of bacterial infections among cultured fish. Chlortetracycline (CTC) is one of the antimicrobials used to solve this problem. It is a broad spectrum antibacterial active against a wide range of Gram-positive and Gram-negative bacteria. Numerous analytical methods for screening, identifying, and quantifying CTC in animal products have been developed over the years. An alternative and advantageous method should rely on expeditious and efficient procedures providing highly specific and sensitive measurements in food samples. Ion-selective electrodes (ISEs) could meet these criteria. The only ISE reported in literature for this purpose used traditional electro-active materials. A selectivity enhancement could however be achieved after improving the analyte recognition by molecularly imprinted polymers (MIPs). Several MIP particles were synthesized and used as electro-active materials. ISEs based in methacrylic acid monomers showed the best analytical performance according to slope (62.5 and 68.6 mV/decade) and detection limit (4.1×10−5 and 5.5×10−5 mol L−1). The electrodes displayed good selectivity. The ISEs are not affected by pH changes ranging from 2.5 to 13. The sensors were successfully applied to the analysis of serum, urine and fish samples.
Resumo:
Silica based nanostructured composite materials doped with luminol and cobalt(II) ion were synthesized and characterized, resulting in a highly chemiluminescent material in the presence of hydrogen peroxide. A detection system with the CL light guided from the reaction tube to the photomultiplier tube using a one millimeter glass optical fiber was developed and assessed. A linear response was observed using a semi-logarithm calibration between 50–2000 µM hydrogen peroxide with 1 µM as the limit of detection.
Resumo:
As a result of the stressful conditions in aquaculture facilities there is a high risk of bacterial infections among cultured fish. Chlortetracycline (CTC) is one of the antimicrobials used to solve this problem. It is a broad spectrum antibacterial active against a wide range of Gram-positive and Gram-negative bacteria. Numerous analytical methods for screening, identifying, and quantifying CTC in animal products have been developed over the years. An alternative and advantageous method should rely on expeditious and efficient procedures providing highly specific and sensitive measurements in food samples. Ion-selective electrodes (ISEs) could meet these criteria. The only ISE reported in literature for this purpose used traditional electro-active materials. A selectivity enhancement could however be achieved after improving the analyte recognition by molecularly imprinted polymers (MIPs). Several MIP particles were synthesized and used as electro-active materials. ISEs based in methacrylic acid monomers showed the best analytical performance according to slope (62.5 and 68.6 mV/decade) and detection limit (4.1 × 10−5 and 5.5 × 10−5 mol L−1). The electrodes displayed good selectivity. The ISEs are not affected by pH changes ranging from 2.5 to 13. The sensors were successfully applied to the analysis of serum, urine and fish samples.
Resumo:
Multiclass analysis method was optimized in order to analyze pesticides traces by gas chromatography with ion-trap and tandem mass spectrometry (GC-MS/MS). The influence of some analytical parameters on pesticide signal response was explored. Five ion trap mass spectrometry (IT-MS) operating parameters, including isolation time (IT), excitation voltage (EV), excitation time (ET),maximum excitation energy or “q” value (q), and isolationmass window (IMW) were numerically tested in order to maximize the instrument analytical signal response. For this, multiple linear regression was used in data analysis to evaluate the influence of the five parameters on the analytical response in the ion trap mass spectrometer and to predict its response. The assessment of the five parameters based on the regression equations substantially increased the sensitivity of IT-MS/MS in the MS/MS mode. The results obtained show that for most of the pesticides, these parameters have a strong influence on both signal response and detection limit.Using the optimized method, a multiclass pesticide analysis was performed for 46 pesticides in a strawberry matrix. Levels higher than the limit established for strawberries by the European Union were found in some samples.
Resumo:
A nanohybrid electrochemical transducer surface was developed using carbon and gold nanomaterials. The strategy relayed on casting multiwalled carbon nanotubes or carbon nanofibers onto a screen-printed carbon electrode surface, followed by in situ generation of gold nanoparticles by electrochemical deposition of ionic gold, in a reproducible manner. These transducers, so fabricated, were characterized using both electrochemical and microscopic techniques. Biofunctionality was evaluated using the streptavidin-biotin interaction system as the biological reaction model. These platforms allow to achieve low detection limits (in the order of pmoles), are reproducible and stable at least for a month after their preparation, being a perfect candidate to be used as transducer of different sensor devices.
Resumo:
A procedure for the determination of seven indicator PCBs in soils and sediments using microwave-assisted extraction (MAE) and headspace solid-phase microextraction (HS-SPME) prior to GC-MS/MS is described. Optimization of the HS-SPME was carried out for the most important parameters such as extraction time, sample volume and temperature. The adopted methodology has reduced consumption of organic solvents and analysis runtime. Under the optimized conditions, the method detection limit ranged from 0.6 to 1 ng/g when 5 g of sample was extracted, the precision on real samples ranged from 4 to 21% and the recovery from 69 to 104%. The proposed method, which included the analysis of a certified reference material in its validation procedure, can be extended to several other PCBs and used in the monitoring of soil or sediments for the presence of PCBs.
Resumo:
The indiscriminate use of antibiotics in foodproducing animals has received increasing attention as a contributory factor in the international emergence of antibiotic- resistant bacteria (Woodward in Pesticide, veterinary and other residues in food, CRC Press, Boca Raton, 2004). Numerous analytical methods for quantifying antibacterial residues in edible animal products have been developed over years (Woodward in Pesticide, veterinary and other residues in food, CRC Press, Boca Raton, 2004; Botsoglou and Fletouris in Handbook of food analysis, residues and other food component analysis, Marcel Dekker, Ghent, 2004). Being Amoxicillin (AMOX) one of those critical veterinary drugs, efforts have been made to develop simple and expeditious methods for its control in food samples. In literature, only one AMOX-selective electrode has been reported so far. In that work, phosphotungstate:amoxycillinium ion exchanger was used as electroactive material (Shoukry et al. in Electroanalysis 6:914–917, 1994). Designing new materials based on molecularly imprinted polymers (MIPs) which are complementary to the size and charge of AMOX could lead to very selective interactions, thus enhancing the selectivity of the sensing unit. AMOXselective electrodes used imprinted polymers as electroactive materials having AMOX as target molecule to design a biomimetic imprinted cavity. Poly(vinyl chloride), sensors of methacrylic acid displayed Nernstian slopes (60.7 mV/decade) and low detection limits (2.9×10-5 mol/L). The potentiometric responses were not affected by pH within 4–5 and showed good selectivity. The electrodes were applied successfully to the analysis of real samples.
Resumo:
This work proposes a new biomimetic sensor material for trimethoprim. It is prepared by means of radical polymerization, having trimethylolpropane trimethacrylate as cross-linker, benzoyl peroxide as radicalar iniciator, chloroform as porogenic solvent, and methacrylic acid and 2-vinyl pyridine as monomers. Different percentages of sensor in a range between 1 and 6% were studied. Their behavior was compared to that obtained with ion-exchanger quaternary ammonium salt (additive tetrakis(p-chlorophenyl)borate or tetraphenylborate). The effect of an anionic additive in the sensing membrane was also tested. Trimethoprim sensors with 1% of imprinted particles from methacrylic acid monomers showed the best response in terms of slope (59.7 mV/decade) and detection limit (4.01×10−7 mol/L). These electrodes displayed also a good selectivity towards nickel, manganese aluminium, ammonium, lead, potassium, sodium, iron, chromium, sulfadiazine, alanine, cysteine, tryptophan, valine and glycine. The sensors were not affected by pH changes from 2 to 6. They were successfully applied to the analysis of water from aquaculture.
Resumo:
Recent studies have shown that, besides the well-recognized T3 and T4 hormones, there are other relevant thyroid hormones circulating in the human body. In particular, this is the case for 3-iodothyronamine (T1AM) and thyronamine (T0AM). One of the reasons for the lack of studies showing their precise importance is the absence of analytical methodologies available. Herein, for the first time, T1AM and T0AM are electrochemically characterized. T0AM was sensed by means of a glassy carbon electrode; furthermore, T1AM was sensed both with a graphitic surface (oxidatively) as well as with mercury (reductively). For both compounds, after oxidation, it was possible to observe the reversible redox reaction concerning the benzoquinone/hydroquinone couple, thus increasing the specificity of the electroanalysis. Therefore, this work provides the basis for an ‘at-point-of-use’ electrochemical strip test for T1AM and T0AM.
Resumo:
Um dos principais objetivos da ciência é perceber a natureza, i.e., descobrir e explicar o funcionamento do mundo que nos rodeia. Para tal, os cientistas precisam de coligir dados e monitorar o meio ambiente. Em particular, considerando que cerca de 70% da Terra é coberta por água, a coleta de parâmetros de caracterização da água de grandes superfícies é uma prioridade. A monitorização das condições da água é feita principalmente através de bóias. No entanto, as bóias disponíveis no mercado não satisfazem as necessidades existentes. Esta é uma das principais razões que levaram o Laboratório de Sistemas Autónomos (LSA) do Instituto Superior de Engenharia do Porto a lançarem um projeto para o desenvolvimento de uma bóia reconfigurável e com dois modos de funcionamento: monitorização ambiental e baliza ativa de regata. O segundo modo é destinado a regatas de veleiros autónomos. O projeto começou há um ano com um projeto do European Project Project [1] (EPS), realizado por quatro estudantes internacionais, destinado à construção da estrutura da bóia e à selecção dos componentes mais adequados para o sistema de medição e controlo. A arquitetura que foi definida para este sistema é do tipo mestre-escravo e é composta por uma unidade de controlo mestre para a telemetria e configuração e uma unidade de controlo escrava para a medição e armazenamento de dados. O desenvolvimento do projeto continuou com dois estudantes belgas que trabalharam na comunicação e no armazenamento de dados. Este projeto, que prossegue com o desenvolvimento da medição e do armazenamento de dados do lado da unidade de controlo escrava, tem os seguintes objetivos: (i ) implementar o protocolo de comunicação na unidade de controlo escrava; (ii ) coligir e armazenar os dados dos sensores no cartão SD em tempo real; (iii ) fornecer dados em tempo útil; e (iv) recuperar dados do cartão SD em tempo diferido. As contribuições anteriores foram estudadas e foi feito um levantamento dos projetos congéneres existentes. O desenvolvimento do projeto atual começou com o protocolo de comunicação. Este protocolo, que foi projetado pelos alunos anteriores, foi um bom ponto de partida. No entanto, o protocolo foi atualizado e melhorado com novas funcionalidades. Esta última componente foi um trabalho conjunto com Laurens Allart, que esteve a trabalhar no subsistema de telemetria e de configuração durante este semestre. O protocolo foi implementado do lado da unidade de controlo escrava através de uma estrutura de múltiplas actividades paralelas (multithreaded). Esta estrutura recebe as mensagens da unidade mestre, executa as ações solicitadas e envia de volta o resultado. A bóia é um dispositivo reconfigurável multimodo que pode ser expandido com novos modos de operação no futuro. Infelizmente, sofre de algumas limitações: suporta uma carga máxima de 40 kg e tem uma área de implantação limitada pela distância máxima à estacão base.
Resumo:
Ecological Water Quality - Water Treatment and Reuse
Resumo:
Cyanobacteria deteriorate the water quality and are responsible for emerging outbreaks and epidemics causing harmful diseases in Humans and animals because of their toxins. Microcystin-LR (MCT) is one of the most relevant cyanotoxin, being the most widely studied hepatotoxin. For safety purposes, the World Health Organization recommends a maximum value of 1 μg L−1 of MCT in drinking water. Therefore, there is a great demand for remote and real-time sensing techniques to detect and quantify MCT. In this work a Fabry–Pérot sensing probe based on an optical fibre tip coated with a MCT selective thin film is presented. The membranes were developed by imprinting MCT in a sol–gel matrix that was applied over the tip of the fibre by dip coating. The imprinting effect was obtained by curing the sol–gel membrane, prepared with (3-aminopropyl) trimethoxysilane (APTMS), diphenyl-dimethoxysilane (DPDMS), tetraethoxysilane (TEOS), in the presence of MCT. The imprinting effect was tested by preparing a similar membrane without template. In general, the fibre Fabry–Pérot with a Molecular Imprinted Polymer (MIP) sensor showed low thermal effect, thus avoiding the need of temperature control in field applications. It presented a linear response to MCT concentration within 0.3–1.4 μg L−1 with a sensitivity of −12.4 ± 0.7 nm L μg−1. The corresponding Non-Imprinted Polymer (NIP) displayed linear behaviour for the same MCT concentration range, but with much less sensitivity, of −5.9 ± 0.2 nm L μg−1. The method shows excellent selectivity for MCT against other species co-existing with the analyte in environmental waters. It was successfully applied to the determination of MCT in contaminated samples. The main advantages of the proposed optical sensor include high sensitivity and specificity, low-cost, robustness, easy preparation and preservation.
Resumo:
IEEE International Conference on Cyber Physical Systems, Networks and Applications (CPSNA'15), Hong Kong, China.
Resumo:
This work proposes a new biomimetic sensor material for trimethoprim. It is prepared by means of radical polymerization, having trimethylolpropane trimethacrylate as cross-linker, benzoyl peroxide as radicalar iniciator, chloroform as porogenic solvent, and methacrylic acid and 2-vinyl pyridine as monomers. Different percentages of sensor in a range between 1 and 6% were studied. Their behavior was compared to that obtained with ion-exchanger quaternary ammonium salt (additive tetrakis(p-chlorophenyl)borate or tetraphenylborate). The effect of an anionic additive in the sensing membrane was also tested. Trimethoprim sensors with 1% of imprinted particles from methacrylic acid monomers showed the best response in terms of slope (59.7 mV/decade) and detection limit (4.01 × 10− 7 mol/L). These electrodes displayed also a good selectivity towards nickel, manganese aluminium, ammonium, lead, potassium, sodium, iron, chromium, sulfadiazine, alanine, cysteine, tryptophan, valine and glycine. The sensors were not affected by pH changes from 2 to 6. They were successfully applied to the analysis of water from aquaculture.
Resumo:
The indiscriminate use of antibiotics in food-producing animals has received increasing attention as a contributory factor in the international emergence of antibiotic-resistant bacteria (Woodward in Pesticide, veterinary and other residues in food, CRC Press, Boca Raton, 2004). Numerous analytical methods for quantifying antibacterial residues in edible animal products have been developed over years (Woodward in Pesticide, veterinary and other residues in food, CRC Press, Boca Raton, 2004; Botsoglou and Fletouris in Handbook of food analysis, residues and other food component analysis, Marcel Dekker, Ghent, 2004). Being Amoxicillin (AMOX) one of those critical veterinary drugs, efforts have been made to develop simple and expeditious methods for its control in food samples. In literature, only one AMOX-selective electrode has been reported so far. In that work, phosphotungstate:amoxycillinium ion exchanger was used as electroactive material (Shoukry et al. in Electroanalysis 6:914–917, 1994). Designing new materials based on molecularly imprinted polymers (MIPs) which are complementary to the size and charge of AMOX could lead to very selective interactions, thus enhancing the selectivity of the sensing unit. AMOX-selective electrodes used imprinted polymers as electroactive materials having AMOX as target molecule to design a biomimetic imprinted cavity. Poly(vinyl chloride), sensors of methacrylic acid displayed Nernstian slopes (60.7 mV/decade) and low detection limits (2.9 × 10−5 mol/L). The potentiometric responses were not affected by pH within 4–5 and showed good selectivity. The electrodes were applied successfully to the analysis of real samples.