146 resultados para IoT platforms
em Instituto Politécnico do Porto, Portugal
Resumo:
As more and more digital resources are available, finding the appropriate document becomes harder. Thus, a new kind of tools, able to recommend the more appropriated resources according the user needs, becomes even more necessary. The current project implements an intelligent recommendation system for elearning platforms. The recommendations are based on one hand, the performance of the user during the training process and on the other hand, the requests made by the user in the form of search queries. All information necessary for decision-making process of recommendation will be represented in the user model. This model will be updated throughout the target user interaction with the platform.
Resumo:
The constant evolution of the Internet and its increasing use and subsequent entailing to private and public activities, resulting in a strong impact on their survival, originates an emerging technology. Through cloud computing, it is possible to abstract users from the lower layers to the business, focusing only on what is most important to manage and with the advantage of being able to grow (or degrades) resources as needed. The paradigm of cloud arises from the necessity of optimization of IT resources evolving in an emergent and rapidly expanding and technology. In this regard, after a study of the most common cloud platforms and the tactic of the current implementation of the technologies applied at the Institute of Biomedical Sciences of Abel Salazar and Faculty of Pharmacy of Oporto University a proposed evolution is suggested in order adorn certain requirements in the context of cloud computing.
Resumo:
LLF (Least Laxity First) scheduling, which assigns a higher priority to a task with a smaller laxity, has been known as an optimal preemptive scheduling algorithm on a single processor platform. However, little work has been made to illuminate its characteristics upon multiprocessor platforms. In this paper, we identify the dynamics of laxity from the system’s viewpoint and translate the dynamics into LLF multiprocessor schedulability analysis. More specifically, we first characterize laxity properties under LLF scheduling, focusing on laxity dynamics associated with a deadline miss. These laxity dynamics describe a lower bound, which leads to the deadline miss, on the number of tasks of certain laxity values at certain time instants. This lower bound is significant because it represents invariants for highly dynamic system parameters (laxity values). Since the laxity of a task is dependent of the amount of interference of higher-priority tasks, we can then derive a set of conditions to check whether a given task system can go into the laxity dynamics towards a deadline miss. This way, to the author’s best knowledge, we propose the first LLF multiprocessor schedulability test based on its own laxity properties. We also develop an improved schedulability test that exploits slack values. We mathematically prove that the proposed LLF tests dominate the state-of-the-art EDZL tests. We also present simulation results to evaluate schedulability performance of both the original and improved LLF tests in a quantitative manner.
Resumo:
Consider the problem of scheduling a set of implicit-deadline sporadic tasks to meet all deadlines on a heterogeneous multiprocessor platform. We use an algorithm proposed in [1] (we refer to it as LP-EE) from state-of-the-art for assigning tasks to heterogeneous multiprocessor platform and (re-)prove its performance guarantee but for a stronger adversary.We conjecture that if a task set can be scheduled to meet deadlines on a heterogeneous multiprocessor platform by an optimal task assignment scheme that allows task migrations then LP-EE meets deadlines as well with no migrations if given processors twice as fast. We illustrate this with an example.
Resumo:
Consider the problem of scheduling a set of implicit-deadline sporadic tasks to meet all deadlines on a heterogeneous multiprocessor platform. We consider a restricted case where the maximum utilization of any task on any processor in the system is no greater than one. We use an algorithm proposed in [1] (we refer to it as LP-EE) from state-of-the-art for assigning tasks to heterogeneous multiprocessor platform and (re-)prove its performance guarantee for this restricted case but for a stronger adversary. We show that if a task set can be scheduled to meet deadlines on a heterogeneous multiprocessor platform by an optimal task assignment scheme that allows task migrations then LP-EE meets deadlines as well with no migrations if given processors twice as fast.
Resumo:
Systems composed of distinct operational modes are a common necessity for embedded applications with strict timing requirements. With the emergence of multi-core platforms protocols to handle these systems are required in order to provide this basic functionality.In this work a description on the problems of creating an effective mode-transition protocol are presented and it is proven that in some cases previous single-core protocols can not be extended to handle the mode-transition in multi-core.
Resumo:
We consider the problem of scheduling a multi-mode real-time system upon identical multiprocessor platforms. Since it is a multi-mode system, the system can change from one mode to another such that the current task set is replaced with a new task set. Ensuring that deadlines are met requires not only that a schedulability test is performed on tasks in each mode but also that (i) a protocol for transitioning from one mode to another is specified and (ii) a schedulability test for each transition is performed. We propose two protocols which ensure that all the expected requirements are met during every transition between every pair of operating modes of the system. Moreover, we prove the correctness of our proposed algorithms by extending the theory about the makespan determination problem.
Resumo:
LLF (Least Laxity First) scheduling, which assigns a higher priority to a task with smaller laxity, has been known as an optimal preemptive scheduling algorithm on a single processor platform. However, its characteristics upon multiprocessor platforms have been little studied until now. Orthogonally, it has remained open how to efficiently schedule general task systems, including constrained deadline task systems, upon multiprocessors. Recent studies have introduced zero laxity (ZL) policy, which assigns a higher priority to a task with zero laxity, as a promising scheduling approach for such systems (e.g., EDZL). Towards understanding the importance of laxity in multiprocessor scheduling, this paper investigates the characteristics of ZL policy and presents the first ZL schedulability test for any work-conserving scheduling algorithm that employs this policy. It then investigates the characteristics of LLF scheduling, which also employs the ZL policy, and derives the first LLF-specific schedulability test on multiprocessors. It is shown that the proposed LLF test dominates the ZL test as well as the state-of-art EDZL test.
Resumo:
Mestrado em Engenharia Informática - Área de Especialização em Sistemas Gráficos e Multimédia
Resumo:
Heterogeneous multicore platforms are becoming an interesting alternative for embedded computing systems with limited power supply as they can execute specific tasks in an efficient manner. Nonetheless, one of the main challenges of such platforms consists of optimising the energy consumption in the presence of temporal constraints. This paper addresses the problem of task-to-core allocation onto heterogeneous multicore platforms such that the overall energy consumption of the system is minimised. To this end, we propose a two-phase approach that considers both dynamic and leakage energy consumption: (i) the first phase allocates tasks to the cores such that the dynamic energy consumption is reduced; (ii) the second phase refines the allocation performed in the first phase in order to achieve better sleep states by trading off the dynamic energy consumption with the reduction in leakage energy consumption. This hybrid approach considers core frequency set-points, tasks energy consumption and sleep states of the cores to reduce the energy consumption of the system. Major value has been placed on a realistic power model which increases the practical relevance of the proposed approach. Finally, extensive simulations have been carried out to demonstrate the effectiveness of the proposed algorithm. In the best-case, savings up to 18% of energy are reached over the first fit algorithm, which has shown, in previous works, to perform better than other bin-packing heuristics for the target heterogeneous multicore platform.
Resumo:
The last decade has witnessed a major shift towards the deployment of embedded applications on multi-core platforms. However, real-time applications have not been able to fully benefit from this transition, as the computational gains offered by multi-cores are often offset by performance degradation due to shared resources, such as main memory. To efficiently use multi-core platforms for real-time systems, it is hence essential to tightly bound the interference when accessing shared resources. Although there has been much recent work in this area, a remaining key problem is to address the diversity of memory arbiters in the analysis to make it applicable to a wide range of systems. This work handles diverse arbiters by proposing a general framework to compute the maximum interference caused by the shared memory bus and its impact on the execution time of the tasks running on the cores, considering different bus arbiters. Our novel approach clearly demarcates the arbiter-dependent and independent stages in the analysis of these upper bounds. The arbiter-dependent phase takes the arbiter and the task memory-traffic pattern as inputs and produces a model of the availability of the bus to a given task. Then, based on the availability of the bus, the arbiter-independent phase determines the worst-case request-release scenario that maximizes the interference experienced by the tasks due to the contention for the bus. We show that the framework addresses the diversity problem by applying it to a memory bus shared by a fixed-priority arbiter, a time-division multiplexing (TDM) arbiter, and an unspecified work-conserving arbiter using applications from the MediaBench test suite. We also experimentally evaluate the quality of the analysis by comparison with a state-of-the-art TDM analysis approach and consistently showing a considerable reduction in maximum interference.
Resumo:
Work in Progress Session, 21st IEEE Real-Time and Embedded Techonology and Applications Symposium (RTAS 2015). 13 to 16, Apr, 2015, pp 27-28. Seattle, U.S.A..
Resumo:
IEEE International Conference on Pervasive Computing and Communications (PerCom). 23 to 26, Mar, 2015, PhD Forum. Saint Louis, U.S.A..
Resumo:
Poster presented in Work in Progress Session, The 28th GI/ITG International Conference on Architecture of Computing Systems (ARCS 2015). 24 to 27, Mar, 2015. Porto, Portugal.
Resumo:
Presented at Work in Progress Session, The 28th GI/ITG International Conference on Architecture of Computing Systems (ARCS 2015). 24 to 27, Mar, 2015. Porto, Portugal.