5 resultados para Interval exchange transformations
em Instituto Politécnico do Porto, Portugal
Resumo:
O presente estudo resulta de uma crescente preocupação e percepção da importância da relação terapeuta-cliente e procura compreender a perspectiva do cliente e a forma como este sente e vive essa relação ao longo de todo o seu processo terapêutico. O estudo realizado, de natureza qualitativa e de carácter exploratório, visa sobretudo analisar a influência da relação terapeuta-cliente na perspectiva do cliente, identificar e descrever os fatores que a influenciam e perceber a mais-valia desta relação ao longo do processo terapêutico. Para tal, foram entrevistadas dezanove pessoas que estão a receber tratamento de terapia ocupacional. Para a recolha dos dados foi aplicada a entrevista semi-estruturada por se pretender um contributo mais envolvente, particularizado e subjetivo dos clientes. Através da realização do estudo e de acordo com a perspetiva dos clientes entrevistados, concluiu-se que a capacidade do terapeuta em construir e estabelecer um vínculo com o cliente ditará grande parte do sucesso ou insucesso do processo terapêutico. Porém, tão importante como formar e estabelecer um vínculo terapeuta-cliente é preciso ter a preocupação contínua de o manter sempre vivo e fortalecido. Para que tal aconteça, o terapeuta não pode menosprezar a experiência de vida e expectativas do cliente e deve assumir um papel de permanente preocupação e atenção a todas as transformações quotidianas pois estas influenciam o envolvimento do cliente nas suas atividades/ocupações e afetam a sua saúde e desempenho. O novo milénio requer dos profissionais de saúde em geral e dos terapeutas ocupacionais em particular, novas habilidades e competências. É fundamental adquirir a consciência de que os clientes são o centro de todo o processo terapêutico. É necessário ter uma visão holística e não fragmentada do cliente. É importante interagir com os clientes e permitir uma troca de conhecimento, entre o saber do cliente e o saber do terapeuta. Essa troca gera convergências, fortalece laços e o processo terapêutico avança. Nesse relacionamento, ambos aprendem, progridem e crescem.
Resumo:
In recent years several countries have set up policies that allow exchange of kidneys between two or more incompatible patient–donor pairs. These policies lead to what is commonly known as kidney exchange programs. The underlying optimization problems can be formulated as integer programming models. Previously proposed models for kidney exchange programs have exponential numbers of constraints or variables, which makes them fairly difficult to solve when the problem size is large. In this work we propose two compact formulations for the problem, explain how these formulations can be adapted to address some problem variants, and provide results on the dominance of some models over others. Finally we present a systematic comparison between our models and two previously proposed ones via thorough computational analysis. Results show that compact formulations have advantages over non-compact ones when the problem size is large.
Resumo:
The problem addressed here originates in the industry of flat glass cutting and wood panel sawing, where smaller items are cut from larger items accordingly to predefined cutting patterns. In this type of industry the smaller pieces that are cut from the patterns are piled around the machine in stacks according to the size of the pieces, which are moved to the warehouse only when all items of the same size have been cut. If the cutting machine can process only one pattern at a time, and the workspace is limited, it is desirable to set the sequence in which the cutting patterns are processed in a way to minimize the maximum number of open stacks around the machine. This problem is known in literature as the minimization of open stacks (MOSP). To find the best sequence of the cutting patterns, we propose an integer programming model, based on interval graphs, that searches for an appropriate edge completion of the given graph of the problem, while defining a suitable coloring of its vertices.
Resumo:
We prove a one-to-one correspondence between (i) C1+ conjugacy classes of C1+H Cantor exchange systems that are C1+H fixed points of renormalization and (ii) C1+ conjugacy classes of C1+H diffeomorphisms f with a codimension 1 hyperbolic attractor Lambda that admit an invariant measure absolutely continuous with respect to the Hausdorff measure on Lambda. However, we prove that there is no C1+alpha Cantor exchange system, with bounded geometry, that is a C1+alpha fixed point of renormalization with regularity alpha greater than the Hausdorff dimension of its invariant Cantor set.
Resumo:
We exhibit the construction of stable arc exchange systems from the stable laminations of hyperbolic diffeomorphisms. We prove a one-to-one correspondence between (i) Lipshitz conjugacy classes of C(1+H) stable arc exchange systems that are C(1+H) fixed points of renormalization and (ii) Lipshitz conjugacy classes of C(1+H) diffeomorphisms f with hyperbolic basic sets Lambda that admit an invariant measure absolutely continuous with respect to the Hausdorff measure on Lambda. Let HD(s)(Lambda) and HD(u)(Lambda) be, respectively, the Hausdorff dimension of the stable and unstable leaves intersected with the hyperbolic basic set L. If HD(u)(Lambda) = 1, then the Lipschitz conjugacy is, in fact, a C(1+H) conjugacy in (i) and (ii). We prove that if the stable arc exchange system is a C(1+HDs+alpha) fixed point of renormalization with bounded geometry, then the stable arc exchange system is smooth conjugate to an affine stable arc exchange system.