3 resultados para Interactive maps
em Instituto Politécnico do Porto, Portugal
Resumo:
Post-MAPS is a web platform that collects gastroenterological exam data from several european hospital centers, to be used in future clinical studies and was developed in partnership with experts from the gastroenterological area and information technology (IT) technicians. However, although functional, this platform has some issues that are crucial for its functioning, and can render user interaction unpleasant and exhaustive. Accordingly, we proposed the development of a new web platform, in which we aimed for an improvement in terms of usability, data uni cation and interoperability. Therefore, it was necessary to identify and study different ways of acquiring clinical data and review some of the existing clinical databases in order to understand how they work and what type of data they store, as well as their impact and contribution to clinical knowledge. Closely linked to the data model is the ability to share data with other systems, so, we also studied the concept of interoperability and analyzed some of the most widely used international standards, such as DICOM, HL7 and openEHR. As one of the primary objectives of this project was to achieve a better level of usability, practices related to Human Computer-Interaction, such as requirement analysis, creation of conceptual models, prototyping, and evaluation were also studied. Before we began the development, we conducted an analysis of the previous platform, from a functional point of view, which allowed us to gather not only a list of architectural and interface issues, but also a list of improvement opportunities. It was also performed a small preliminary study in order to evaluate the platform's usability, where we were able to realize that perceived usability is different between users, and that, in some aspects, varies according to their location, age and years of experience. Based on the information gathered during the platform's analysis and in the conclusions of the preliminary study, a new platform was developed, prepared for all potential users, from the inexperienced to the most comfortable with technology. It presents major improvements in terms of usability, also providing several new features that simplify the users' work, improving their interaction with the system, making their experience more enjoyable.
Resumo:
Interactive products are appealing objects in a technology-driven society and the offer in the market is wide and varied. Most of the existing interactive products only provide either light or sound experiences. Therefore, the goal of this project was to develop a product aimed for children combining both features. This project was developed by a team of four thirdyear students with different engineering backgrounds and nationalities during the European Project Semester at ISEP (EPS@ISEP) in 2012. This paper presents the process that led to the development of an interactive sound table that combines nine identical interaction blocks, a control block and a sound block. Each interaction block works independently and is composed of four light emitting diodes (LED) and one infrared (IR) sensor. The control is performed by an Arduino microcontroller and the sound block includes a music shield and a pair of loud speakers. A number of tests were carried out to assess whether the controller, IR sensors, LED, music shield and speakers work together properly and if the ensemble was a viable interactive light and sound device for children.
Resumo:
Atualmente os sistemas Automatic Vehicle Location (AVL) fazem parte do dia-a-dia de muitas empresas. Esta tecnologia tem evoluído significativamente ao longo da última década, tornando-se mais acessível e fácil de utilizar. Este trabalho consiste no desenvolvimento de um sistema de localização de veículos para smartphone Android. Para tal, foram desenvolvidas duas aplicações: uma aplicação de localização para smarphone Android e uma aplicação WEB de monitorização. A aplicação de localização permite a recolha de dados de localização GPS e estabelecer uma rede piconet Bluetooth, admitindo assim a comunicação simultânea com a unidade de controlo de um veículo (ECU) através de um adaptador OBDII/Bluetooth e com até sete sensores/dispositivos Bluetooth que podem ser instalados no veículo. Os dados recolhidos pela aplicação Android são enviados periodicamente (intervalo de tempo definido pelo utilizador) para um servidor Web No que diz respeito à aplicação WEB desenvolvida, esta permite a um gestor de frota efetuar a monitorização dos veículos em circulação/registados no sistema, podendo visualizar a posição geográfica dos mesmos num mapa interativo (Google Maps), dados do veículo (OBDII) e sensores/dispositivos Bluetooth para cada localização enviada pela aplicação Android. O sistema desenvolvido funciona tal como esperado. A aplicação Android foi testada inúmeras vezes e a diferentes velocidades do veículo, podendo inclusive funcionar em dois modos distintos: data logger e data pusher, consoante o estado da ligação à Internet do smartphone. Os sistemas de localização baseados em smartphone possuem vantagens relativamente aos sistemas convencionais, nomeadamente a portabilidade, facilidade de instalação e baixo custo.