5 resultados para Intense visible upconversion emission

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: This paper aims to address some of the main possible applications of actual Nuclear Medicine Imaging techniques and methodologies in the specific context of Sports Medicine, namely in two critical systems: musculoskeletal and cardiovascular. Discussion: At the musculoskeletal level, bone scintigraphy techniques proved to be a mean of diagnosis of functional orientation and high sensibility compared with other morphological imaging techniques in the detection and temporal evaluation of pathological situations, for instance allowing the acquisition of information of great relevance in athletes with stress fractures. On the other hand, infection/inflammation studies might be of an important added value to characterize specific situations, early diagnose of potential critical issues – so giving opportunity to precise, complete and fast solutions – while allowing the evaluation and eventual optimization of training programs. At cardiovascular system level, Nuclear Medicine had proved to be crucial in differential diagnosis between cardiac hypertrophy secondary to physical activity (the so called "athlete's heart") and hypertrophic cardiomyopathy, in the diagnosis and prognosis of changes in cardiac function in athletes, as well as in direct - and non-invasive - in vivo visualization of sympathetic cardiac innervation, something that seems to take more and more importance nowadays, namely in order to try to avoid sudden death episodes at intense physical effort. Also the clinical application of Positron Emission Tomography (PET) has becoming more and more widely recognized as promising. Conclusions: It has been concluded that Nuclear Medicine can become an important application in Sports Medicine. Its well established capabilities to early detection of processes involving functional properties allied to its high sensibility and the actual technical possibilities (namely those related with hybrid imaging, that allows to add information provided by high resolution morphological imaging techniques, such as CT and/or MRI) make it a powerful diagnostic tool, claiming to be used on an each day higher range of clinical applications related with all levels of sport activities. Since the improvements at equipment characteristics and detection levels allows the use of smaller and smaller doses, so minimizing radiation exposure it is believed by the authors that the increase of the use of NM tools in the Sports Medicine area should be considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of information technologies (specially the Internet, Web 2.0 and social tools) make informal learning more visible. This kind of learning is not linked to an institution or a period of time, but it is important enough to be taken into account. On the one hand, learners should be able to communicate to the institutions they are related to, what skills they possess, whether they were achieved in a formal or informal way. On the other hand the companies and educational institutions need to have a deeper knowledge about the competencies of their staff. The TRAILER project provides a methodology supported by a technological framework to facilitate communication about informal learning between businesses, employees and learners. The paper presents the project and some of the work carried out, an exploratory analysis about how informal learning is considered and the technological framework proposed. Whilst challenges remain in terms of establishing the meaningfulness of technological engagement for employees and businesses, the continuing transformation of the social, technological and educational environment is likely to lead to greater emphasis for the effective exploitation of informal learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A par das patologias oncológicas, as doenças do foro cardíaco, em particular a doença arterial coronária, são uma das principais causas de morte nos países industrializados, devido sobretudo, à grande incidência de enfartes do miocárdio. Uma das formas de diagnóstico e avaliação desta condição passa pela obtenção de imagens de perfusão miocárdica com radionuclídeos, realizada por Tomografia por Emissão de Positrões (PET). As soluções injectáveis de [15O]-H2O, [82Rb] e [13N]-NH3 são as mais utilizadas neste tipo de exame clínico. No Instituto de Ciências Nucleares Aplicadas à Saúde (ICNAS), a existência de um ciclotrão tem permitido a produção de uma variedade de radiofármacos, com aplicações em neurologia, oncologia e cardiologia. Recentemente, surgiu a oportunidade de iniciar exames clínicos com [13N]-NH3 para avaliação da perfusão miocárdica. É neste âmbito que surge a oportunidade do presente trabalho, pois antes da sua utilização clínica é necessário realizar a optimização da produção e a validação de todo o processo segundo as normas de Boas Práticas Radiofarmacêuticas. Após uma fase de optimização do processo, procedeu-se à avaliação dos parâmetros físico-químicos e biológicos da preparação de [13N]-NH3, de acordo com as indicações da Farmacopeia Europeia (Ph. Eur.) 8.2. De acordo com as normas farmacêuticas, foram realizados 3 lotes de produção consecutivos para validação da produção de [13N]-NH3. Os resultados mostraram um produto final límpido e ausente de cor, com valores de pH dentro do limite especificado, isto é, entre 4,5 e 8,5. A pureza química das amostras foi verificada, uma vez que relativamente ao teste colorimétrico, a tonalidade da cor da solução de [13N]-NH3 não era mais intensa que a solução de referência. As preparações foram identificadas como sendo [13N]-NH3, através dos resultados obtidos por cromatografia iónica, espectrometria de radiação gama e tempo de semi-vida. Por examinação do cromatograma obtido com a solução a ser testada, observou-se que o pico principal possuia um tempo de retenção aproximadamente igual ao pico do cromatograma obtido para a solução de referência. Além disso, o espectro de radiação gama mostrou um pico de energia 0,511 MeV e um outro adicional de 1,022 MeV para os fotões gama, característico de radionuclídeos emissores de positrões. O tempo de semi-vida manteve-se dentro do intervalo indicado, entre 9 e 11 minutos. Verificou-se, igualmente, a pureza radioquímica das amostras, correspondendo um mínimo de 99% da radioactividade total ao [13N], bem como a pureza radionuclídica, observando-se uma percentagem de impurezas inferiores a 1%, 2h após o fim da síntese. Os testes realizados para verificação da esterilidade e determinação da presença de endotoxinas bacterianas nas preparações de [13N]-NH3 apresentaram-se negativos.Os resultados obtidos contribuem, assim, para a validação do método para a produção de [13N]-NH3, uma vez que cumprem os requisitos especificados nas normas europeias, indicando a obtenção de um produto seguro e com a qualidade necessária para ser administrado em pacientes para avaliação da perfusão cardíaca por PET.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ammonia is an important gas in many power plants and industrial processes so its detection is of extreme importance in environmental monitoring and process control due to its high toxicity. Ammonia’s threshold limit is 25 ppm and the exposure time limit is 8 h, however exposure to 35 ppm is only secure for 10 min. In this work a brief introduction to ammonia aspects are presented, like its physical and chemical properties, the dangers in its manipulation, its ways of production and its sources. The application areas in which ammonia gas detection is important and needed are also referred: environmental gas analysis (e.g. intense farming), automotive-, chemical- and medical industries. In order to monitor ammonia gas in these different areas there are some requirements that must be attended. These requirements determine the choice of sensor and, therefore, several types of sensors with different characteristics were developed, like metal oxides, surface acoustic wave-, catalytic-, and optical sensors, indirect gas analyzers, and conducting polymers. All the sensors types are described, but more attention will be given to polyaniline (PANI), particularly to its characteristics, syntheses, chemical doping processes, deposition methods, transduction modes, and its adhesion to inorganic materials. Besides this, short descriptions of PANI nanostructures, the use of electrospinning in the formation of nanofibers/microfibers, and graphene and its characteristics are included. The created sensor is an instrument that tries to achieve a goal of the medical community in the control of the breath’s ammonia levels being an easy and non-invasive method for diagnostic of kidney malfunction and/or gastric ulcers. For that the device should be capable to detect different levels of ammonia gas concentrations. So, in the present work an ammonia gas sensor was developed using a conductive polymer composite which was immobilized on a carbon transducer surface. The experiments were targeted to ammonia measurements at ppb level. Ammonia gas measurements were carried out in the concentration range from 1 ppb to 500 ppb. A commercial substrate was used; screen-printed carbon electrodes. After adequate surface pre-treatment of the substrate, its electrodes were covered by a nanofibrous polymeric composite. The conducting polyaniline doped with sulfuric acid (H2SO4) was blended with reduced graphene oxide (RGO) obtained by wet chemical synthesis. This composite formed the basis for the formation of nanofibers by electrospinning. Nanofibers will increase the sensitivity of the sensing material. The electrospun PANI-RGO fibers were placed on the substrate and then dried at ambient temperature. Amperometric measurements were performed at different ammonia gas concentrations (1 to 500 ppb). The I-V characteristics were registered and some interfering gases were studied (NO2, ethanol, and acetone). The gas samples were prepared in a custom setup and were diluted with dry nitrogen gas. Electrospun nanofibers of PANI-RGO composite demonstrated an enhancement in NH3 gas detection when comparing with only electrospun PANI nanofibers. Was visible higher range of resistance at concentrations from 1 to 500 ppb. It was also observed that the sensor had stable, reproducible and recoverable properties. Moreover, it had better response and recovery times. The new sensing material of the developed sensor demonstrated to be a good candidate for ammonia gas determination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oceans - San Diego, 2013