3 resultados para Ink splitting force
em Instituto Politécnico do Porto, Portugal
Resumo:
Consider the problem of scheduling a set of sporadic tasks on a multiprocessor system to meet deadlines using a task-splitting scheduling algorithm. Task-splitting (also called semi-partitioning) scheduling algorithms assign most tasks to just one processor but a few tasks are assigned to two or more processors, and they are dispatched in a way that ensures that a task never executes on two or more processors simultaneously. A particular type of task-splitting algorithms, called slot-based task-splitting dispatching, is of particular interest because of its ability to schedule tasks with high processor utilizations. Unfortunately, no slot-based task-splitting algorithm has been implemented in a real operating system so far. In this paper we discuss and propose some modifications to the slot-based task-splitting algorithm driven by implementation concerns, and we report the first implementation of this family of algorithms in a real operating system running Linux kernel version 2.6.34. We have also conducted an extensive range of experiments on a 4-core multicore desktop PC running task-sets with utilizations of up to 88%. The results show that the behavior of our implementation is in line with the theoretical framework behind it.
Resumo:
Consider the problem of scheduling a set of sporadic tasks on a multiprocessor system to meet deadlines using a tasksplitting scheduling algorithm. Task-splitting (also called semipartitioning) scheduling algorithms assign most tasks to just one processor but a few tasks are assigned to two or more processors, and they are dispatched in a way that ensures that a task never executes on two or more processors simultaneously. A certain type of task-splitting algorithms, called slot-based task-splitting, is of particular interest because of its ability to schedule tasks at high processor utilizations. We present a new schedulability analysis for slot-based task-splitting scheduling algorithms that takes the overhead into account and also a new task assignment algorithm.
Resumo:
Hard real- time multiprocessor scheduling has seen, in recent years, the flourishing of semi-partitioned scheduling algorithms. This category of scheduling schemes combines elements of partitioned and global scheduling for the purposes of achieving efficient utilization of the system’s processing resources with strong schedulability guarantees and with low dispatching overheads. The sub-class of slot-based “task-splitting” scheduling algorithms, in particular, offers very good trade-offs between schedulability guarantees (in the form of high utilization bounds) and the number of preemptions/migrations involved. However, so far there did not exist unified scheduling theory for such algorithms; each one was formulated in its own accompanying analysis. This article changes this fragmented landscape by formulating a more unified schedulability theory covering the two state-of-the-art slot-based semi-partitioned algorithms, S-EKG and NPS-F (both fixed job-priority based). This new theory is based on exact schedulability tests, thus also overcoming many sources of pessimism in existing analysis. In turn, since schedulability testing guides the task assignment under the schemes in consideration, we also formulate an improved task assignment procedure. As the other main contribution of this article, and as a response to the fact that many unrealistic assumptions, present in the original theory, tend to undermine the theoretical potential of such scheduling schemes, we identified and modelled into the new analysis all overheads incurred by the algorithms in consideration. The outcome is a new overhead-aware schedulability analysis that permits increased efficiency and reliability. The merits of this new theory are evaluated by an extensive set of experiments.