6 resultados para Incremental discretization
em Instituto Politécnico do Porto, Portugal
Resumo:
This paper presents the SmartClean tool. The purpose of this tool is to detect and correct the data quality problems (DQPs). Compared with existing tools, SmartClean has the following main advantage: the user does not need to specify the execution sequence of the data cleaning operations. For that, an execution sequence was developed. The problems are manipulated (i.e., detected and corrected) following that sequence. The sequence also supports the incremental execution of the operations. In this paper, the underlying architecture of the tool is presented and its components are described in detail. The tool's validity and, consequently, of the architecture is demonstrated through the presentation of a case study. Although SmartClean has cleaning capabilities in all other levels, in this paper are only described those related with the attribute value level.
Resumo:
The theory of fractional calculus goes back to the beginning of the theory of differential calculus, but its application received attention only recently. In the area of automatic control some work was developed, but the proposed algorithms are still in a research stage. This paper discusses a novel method, with two degrees of freedom, for the design of fractional discrete-time derivatives. The performance of several approximations of fractional derivatives is investigated in the perspective of nonlinear system control.
Resumo:
In this paper we propose the use of the least-squares based methods for obtaining digital rational approximations (IIR filters) to fractional-order integrators and differentiators of type sα, α∈R. Adoption of the Padé, Prony and Shanks techniques is suggested. These techniques are usually applied in the signal modeling of deterministic signals. These methods yield suboptimal solutions to the problem which only requires finding the solution of a set of linear equations. The results reveal that the least-squares approach gives similar or superior approximations in comparison with other widely used methods. Their effectiveness is illustrated, both in the time and frequency domains, as well in the fractional differintegration of some standard time domain functions.
Resumo:
Volatile organic compounds are a common source of groundwater contamination that can be easily removed by air stripping in columns with random packing and using a counter-current flow between the phases. This work proposes a new methodology for column design for any type of packing and contaminant which avoids the necessity of an arbitrary chosen diameter. It also avoids the employment of the usual graphical Eckert correlations for pressure drop. The hydraulic features are previously chosen as a project criterion. The design procedure was translated into a convenient algorithm in C++ language. A column was built in order to test the design, the theoretical steady-state and dynamic behaviour. The experiments were conducted using a solution of chloroform in distilled water. The results allowed for a correction in the theoretical global mass transfer coefficient previously estimated by the Onda correlations, which depend on several parameters that are not easy to control in experiments. For best describe the column behaviour in stationary and dynamic conditions, an original mathematical model was developed. It consists in a system of two partial non linear differential equations (distributed parameters). Nevertheless, when flows are steady, the system became linear, although there is not an evident solution in analytical terms. In steady state the resulting ODE can be solved by analytical methods, and in dynamic state the discretization of the PDE by finite differences allows for the overcoming of this difficulty. To estimate the contaminant concentrations in both phases in the column, a numerical algorithm was used. The high number of resulting algebraic equations and the impossibility of generating a recursive procedure did not allow the construction of a generalized programme. But an iterative procedure developed in an electronic worksheet allowed for the simulation. The solution is stable only for similar discretizations values. If different values for time/space discretization parameters are used, the solution easily becomes unstable. The system dynamic behaviour was simulated for the common liquid phase perturbations: step, impulse, rectangular pulse and sinusoidal. The final results do not configure strange or non-predictable behaviours.
Resumo:
Dissertação apresentada ao Instituto Politécnico do Porto-Instituto Superior de Contabilidade e Administração do Porto, para obtenção do Grau de Mestre em Empreendedorismo e Internacionalização, sob orientação de Orlando Manuel Martins Marques de Lima Rua, PhD
Resumo:
Dissertação apresentada ao Instituto Politécnico do Porto - Instituto Superior de Contabilidade e Administração do Porto, para obtenção do Grau de Mestre em Assessoria e Administração de Organizações, sob orientação de Anabela Mesquita, PhD