3 resultados para IGG
em Instituto Politécnico do Porto, Portugal
Resumo:
Celiac disease is a gluten-induced autoimmune enteropathy characterized by the presence of tissue tranglutaminase (tTG) autoantibodies. A disposable electrochemical immunosensor (EI) for the detection of IgA and IgG type anti-tTG autoantibodies in real patient’s samples is presented. Screen-printed carbon electrodes (SPCE) nanostructurized with carbon nanotubes and gold nanoparticles were used as the transducer surface. This transducer exhibits the excellent characteristics of carbon–metal nanoparticle hybrid conjugation and led to the amplification of the immunological interaction. The immunosensing strategy consisted of the immobilization of tTG on the nanostructured electrode surface followed by the electrochemical detection of the autoantibodies present in the samples using an alkaline phosphatase (AP) labelled anti-human IgA or IgG antibody. The analytical signal was based on the anodic redissolution of enzymatically generated silver by cyclic voltammetry. The results obtained were corroborated with a commercial ELISA kit indicating that the electrochemical immunosensor is a trustful analytical screening tool.
Resumo:
Antibodies against gliadin are used to detect celiac disease (CD) in patients. An electrochemical immunosensor for the voltammetric detection of human anti-gliadin antibodies (AGA) IgA and AGA IgG in real serum samples is proposed. The transducer surface consists of screen-printed carbon electrodes modified with a carbon nanotube/gold nanoparticle hybrid system, which provides a very useful surface for the amplification of the immunological interactions. The immunosensing strategy is based on the immobilization of gliadin, the antigen for the autoantibodies of interest, onto the nanostructured surface. The antigen–antibody interaction is recorded using alkaline phosphatase labeled anti-human antibodies and a mixture of 3-indoxyl phosphate with silver ions (3-IP/Ag+) was used as the substrate. The analytical signal is based on the anodic redissolution of the enzymatically generated silver by cyclic voltammetry. The electrochemical behavior of this immunosensor was carefully evaluated assessing aspects as sensitivity, non-specific binding and matrix effects, and repeatability and reproducibility. The results were supported with a commercial ELISA test.
Resumo:
Celiac disease (CD) is a gluten-induced autoimmune enteropathy characterized by the presence of antibodies against gliadin (AGA) and anti-tissue transglutaminase (anti-tTG) antibodies. A disposable electrochemical dual immunosensor for the simultaneous detection of IgA and IgG type AGA and antitTG antibodies in real patient’s samples is presented. The proposed immunosensor is based on a dual screen-printed carbon electrode, with two working electrodes, nanostructured with a carbon–metal hybrid system that worked as the transducer surface. The immunosensing strategy consisted of the immobilization of gliadin and tTG (i.e. CD specific antigens) on the nanostructured electrode surface. The electrochemical detection of the human antibodies present in the assayed serum samples was carried out through the antigen–antibody interaction and recorded using alkaline phosphatase labelled anti-human antibodies and a mixture of 3-indoxyl phosphate with silver ions was used as the substrate. The analytical signal was based on the anodic redissolution of enzymatically generated silver by cyclic voltammetry. The results obtained were corroborated with commercial ELISA kits indicating that the developed sensor can be a good alternative to the traditional methods allowing a decentralization of the analyses towards a point-of-care strategy.