75 resultados para Hybrid semi-parametric modeling
em Instituto Politécnico do Porto, Portugal
Resumo:
The self similar branching arrangement of the airways makes the respiratory system an ideal candidate for the application of fractional calculus theory. The fractal geometry is typically characterized by a recurrent structure. This study investigates the identification of a model for the respiratory tree by means of its electrical equivalent based on intrinsic morphology. Measurements were obtained from seven volunteers, in terms of their respiratory impedance by means of its complex representation for frequencies below 5 Hz. A parametric modeling is then applied to the complex valued data points. Since at low-frequency range the inertance is negligible, each airway branch is modeled by using gamma cell resistance and capacitance, the latter having a fractional-order constant phase element (CPE), which is identified from measurements. In addition, the complex impedance is also approximated by means of a model consisting of a lumped series resistance and a lumped fractional-order capacitance. The results reveal that both models characterize the data well, whereas the averaged CPE values are supraunitary and subunitary for the ladder network and the lumped model, respectively.
Resumo:
A implementação da evolução tecnológica no setor da construção tem se caracterizado pelo aparecimento de novas tecnologias que dinamizam os processos de troca de informação entre os vários intervenientes no ciclo de vida do empreendimento. O surgimento da tecnologia Building Information Modeling - BIM assente na modelação paramétrica e na interoperabilidade suportada em ficheiros de padrão aberto (IFC) pressupõem um novo paradigma na forma como são tratados os processos de troca de informação entre os vários intervenientes no ciclo de vida dos empreendimentos. Com base no BIM o Construction Operations Building Information Exchange – COBie, é outra tecnologia recente que recolhe informações não geométricas associadas ao modelo e em conjunto com a informação geométrica produzida pelo BIM fazem parte dos documentos de entrega para a fase Facility Management – FM. O objetivo da presente dissertação centrou-se no estudo da evolução de um modelo BIM de construção para a gestão de empreendimento. Foi desenvolvido o estudo de um modelo protótipo que incidiu na utilização de softwares para verificação e aplicação das tecnologias COBie e BIM e também foi sincronizado com a fase FM. Da aplicação dos requisitos COBie e modelação BIM foram extraídas informações geométricas e não geométricas preenchidas nas folhas de trabalho COBie. As principais conclusões do estudo realizado foram que as tecnologias COBie e BIM têm pouca implantação a nível nacional e a sua integração dinamiza os processos, reduzindo custos e aumentando a qualidade da informação fornecida.
Resumo:
The tongue is the most important and dynamic articulator for speech formation, because of its anatomic aspects (particularly, the large volume of this muscular organ comparatively to the surrounding organs of the vocal tract) and also due to the wide range of movements and flexibility that are involved. In speech communication research, a variety of techniques have been used for measuring the three-dimensional vocal tract shapes. More recently, magnetic resonance imaging (MRI) becomes common; mainly, because this technique allows the collection of a set of static and dynamic images that can represent the entire vocal tract along any orientation. Over the years, different anatomical organs of the vocal tract have been modelled; namely, 2D and 3D tongue models, using parametric or statistical modelling procedures. Our aims are to present and describe some 3D reconstructed models from MRI data, for one subject uttering sustained articulations of some typical Portuguese sounds. Thus, we present a 3D database of the tongue obtained by stack combinations with the subject articulating Portuguese vowels. This 3D knowledge of the speech organs could be very important; especially, for clinical purposes (for example, for the assessment of articulatory impairments followed by tongue surgery in speech rehabilitation), and also for a better understanding of acoustic theory in speech formation.
Resumo:
Joining of components with structural adhesives is currently one of the most widespread techniques for advanced structures (e.g., aerospace or aeronautical). Adhesive bonding does not involve drilling operations and it distributes the load over a larger area than mechanical joints. However, peak stresses tend to develop near the overlap edges because of differential straining of the adherends and load asymmetry. As a result, premature failures can be expected, especially for brittle adhesives. Moreover, bonded joints are very sensitive to the surface treatment of the material, service temperature, humidity and ageing. To surpass these limitations, the combination of adhesive bonding with spot-welding is a choice to be considered, adding a few advantages like superior static strength and stiffness, higher peeling and fatigue strength and easier fabrication, as fixtures during the adhesive curing are not needed. The experimental and numerical study presented here evaluates hybrid spot-welded/bonded single-lap joints in comparison with the purely spot-welded and bonded equivalents. A parametric study on the overlap length (LO) allowed achieving different strength advantages, up to 58% compared to spot-welded joints and 24% over bonded joints. The Finite Element Method (FEM) and Cohesive Zone Models (CZM) for damage growth were also tested in Abaqus® to evaluate this technique for strength prediction, showing accurate estimations for all kinds of joints.
Resumo:
In this work an adaptive modeling and spectral estimation scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for speech enhancement. Both speech and noise signals are modeled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. The model parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The speech enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. This approach is particularly useful as a pre-processing module for parametric based speech recognition systems that rely on spectral time dependent models. The system performance has been evaluated by a set of human listeners and by spectral distances. In both cases the use of this pre-processing module has led to improved results.
Resumo:
This paper proposes a novel framework for modelling the Value for the Customer, the so-called the Conceptual Model for Decomposing Value for the Customer (CMDVC). This conceptual model is first validated through an exploratory case study where the authors validate both the proposed constructs of the model and their relations. In a second step the authors propose a mathematical formulation for the CMDVC as well as a computational method. This has enabled the final quantitative discussion of how the CMDVC can be applied and used in the enterprise environment, and the final validation by the people in the enterprise. Along this research, we were able to confirm that the results of this novel quantitative approach to model the Value for the Customer is consistent with the company's empirical experience. The paper further discusses the merits and limitations of this approach, proposing that the model is likely to bring value to support not only the contract preparation at an Ex-Ante Negotiation Phase, as demonstrated, but also along the actual negotiation process, as finally confirmed by an enterprise testimonial.
Resumo:
This chapter addresses the resolution of dynamic scheduling by means of meta-heuristic and multi-agent systems. Scheduling is an important aspect of automation in manufacturing systems. Several contributions have been proposed, but the problem is far from being solved satisfactorily, especially if scheduling concerns real world applications. The proposed multi-agent scheduling system assumes the existence of several resource agents (which are decision-making entities based on meta-heuristics) distributed inside the manufacturing system that interact with other agents in order to obtain optimal or near-optimal global performances.
Resumo:
The paper proposes a methodology to increase the probability of delivering power to any load point by identifying new investments in distribution energy systems. The proposed methodology is based on statistical failure and repair data of distribution components and it uses a fuzzy-probabilistic modeling for the components outage parameters. The fuzzy membership functions of the outage parameters of each component are based on statistical records. A mixed integer nonlinear programming optimization model is developed in order to identify the adequate investments in distribution energy system components which allow increasing the probability of delivering power to any customer in the distribution system at the minimum possible cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 180 bus distribution network.
Resumo:
In this paper we present a Constraint Logic Programming (CLP) based model, and hybrid solving method for the Scheduling of Maintenance Activities in the Power Transmission Network. The model distinguishes from others not only because of its completeness but also by the way it models and solves the Electric Constraints. Specifically we present a efficient filtering algorithm for the Electrical Constraints. Furthermore, the solving method improves the pure CLP methods efficiency by integrating a type of Local Search technique with CLP. To test the approach we compare the method results with another method using a 24 bus network, which considerers 42 tasks and 24 maintenance periods.
Resumo:
This paper proposes a new methodology to reduce the probability of occurring states that cause load curtailment, while minimizing the involved costs to achieve that reduction. The methodology is supported by a hybrid method based on Fuzzy Set and Monte Carlo Simulation to catch both randomness and fuzziness of component outage parameters of transmission power system. The novelty of this research work consists in proposing two fundamentals approaches: 1) a global steady approach which deals with building the model of a faulted transmission power system aiming at minimizing the unavailability corresponding to each faulted component in transmission power system. This, results in the minimal global cost investment for the faulted components in a system states sample of the transmission network; 2) a dynamic iterative approach that checks individually the investment’s effect on the transmission network. A case study using the Reliability Test System (RTS) 1996 IEEE 24 Buses is presented to illustrate in detail the application of the proposed methodology.
Resumo:
This paper presents a methodology for distribution networks reconfiguration in outage presence in order to choose the reconfiguration that presents the lower power losses. The methodology is based on statistical failure and repair data of the distribution power system components and uses fuzzy-probabilistic modelling for system component outage parameters. Fuzzy membership functions of system component outage parameters are obtained by statistical records. A hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. Once obtained the system states by Monte Carlo simulation, a logical programming algorithm is applied to get all possible reconfigurations for every system state. In order to evaluate the line flows and bus voltages and to identify if there is any overloading, and/or voltage violation a distribution power flow has been applied to select the feasible reconfiguration with lower power losses. To illustrate the application of the proposed methodology to a practical case, the paper includes a case study that considers a real distribution network.
Fuzzy Monte Carlo mathematical model for load curtailment minimization in transmission power systems
Resumo:
This paper presents a methodology which is based on statistical failure and repair data of the transmission power system components and uses fuzzyprobabilistic modeling for system component outage parameters. Using statistical records allows developing the fuzzy membership functions of system component outage parameters. The proposed hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. A network contingency analysis to identify any overloading or voltage violation in the network is performed once obtained the system states by Monte Carlo simulation. This is followed by a remedial action algorithm, based on optimal power flow, to reschedule generations and alleviate constraint violations and, at the same time, to avoid any load curtailment, if possible, or, otherwise, to minimize the total load curtailment, for the states identified by the contingency analysis. In order to illustrate the application of the proposed methodology to a practical case, the paper will include a case study for the Reliability Test System (RTS) 1996 IEEE 24 BUS.
Resumo:
This paper present a methodology to choose the distribution networks reconfiguration that presents the lower power losses. The proposed methodology is based on statistical failure and repair data of the distribution power system components and uses fuzzy-probabilistic modeling for system component outage parameters. The proposed hybrid method using fuzzy sets and Monte Carlo simulation based on the fuzzyprobabilistic models allows catching both randomness and fuzziness of component outage parameters. A logic programming algorithm is applied, once obtained the system states by Monte Carlo Simulation, to get all possible reconfigurations for each system state. To evaluate the line flows and bus voltages and to identify if there is any overloading, and/or voltage violation an AC load flow has been applied to select the feasible reconfiguration with lower power losses. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 115 buses distribution network.
Resumo:
Many current e-commerce systems provide personalization when their content is shown to users. In this sense, recommender systems make personalized suggestions and provide information of items available in the system. Nowadays, there is a vast amount of methods, including data mining techniques that can be employed for personalization in recommender systems. However, these methods are still quite vulnerable to some limitations and shortcomings related to recommender environment. In order to deal with some of them, in this work we implement a recommendation methodology in a recommender system for tourism, where classification based on association is applied. Classification based on association methods, also named associative classification methods, consist of an alternative data mining technique, which combines concepts from classification and association in order to allow association rules to be employed in a prediction context. The proposed methodology was evaluated in some case studies, where we could verify that it is able to shorten limitations presented in recommender systems and to enhance recommendation quality.
Resumo:
Introdução: No Centro Hospitalar de São João, EPE a partir de 2008, foi implementado o sistema semi-automático de reposição de stocks nivelados de medicamentos, Pyxis®, atualmente implementado em 16 serviços clínicos. Atendendo ao crescimento verificado na implementação deste sistema automatizado na instituição, este trabalho pretende dar a conhecer a realidade de preparação da medicação para reposição no sistema semi-automático Pyxis®, por avaliação do número de unidades de medicamentos repostos diariamente e por dia da semana. Material e Métodos: Desenvolveu-se um estudo longitudinal retrospetivo onde se analisou a totalidade de serviços com implementação Pyxis® através do registo diário de reposição dos diferentes Serviços Clínicos num período de 41 dias consecutivos. Numa segunda fase, os dados foram sintetizados sob a forma de tabelas em Microsoft Office Excel®, tendo posteriormente sido construídos os respetivos gráficos para análise. Resultados: Os resultados, representados graficamente, mostram que a segunda-feira é o dia da semana com maior número de reposições de medicamentos, sendo os serviços com maior número de reposições totais UCI Geral, UCI Neurocríticos, Cirurgia Cardiotorácica e UCIPU. Discussão / Conclusões: Os resultados obtidos permitiram verificar uma sobrecarga de referências de medicamentos e unidades repostas às segundas-feiras, atingindo, em muitos serviços, valores de unidades repostas duas vezes superior à média de reposições do serviço (por ex. UCI Neurocíticos). Contudo, apesar do reduzido período de análise, os dados parecem evidenciar que o facto de haver reposições ao domingo agiliza o processo de reposição dos Pyxis® às segundas-feiras.