2 resultados para Human-induced Loads
em Instituto Politécnico do Porto, Portugal
Resumo:
Fungi have been considered a potential source of natural anticancer drugs. However, studies on these organisms have mainly focused on compounds present in the sporocarp and mycelium. The aim of this study was to assess the anticancer potential of fungal spores using a bioassay-guided fractionation with cancer and normal cell lines. Crude extracts from spores of the basidiomycetous fungus Pisolithus tinctorius were prepared using five solvents/solvent mixtures in order to select the most effective crude extraction procedure. A dichloromethane/methanol (DCM/MeOH) mixture was found to produce the highest extraction yield, and this extract was fractionated into 11 fractions. Crude extracts and fractions were assayed for cytotoxicity in the human osteocarcinoma cell line MG63, the human breast carcinoma cell line T47D, the human colon adenocarcinoma cell line RKO, and the normal human brain capillary endothelial cell line hCMEC/D3. Cytotoxicity was assessed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) reduction assay. The results showed a reduction in cancer cell viability of approximately 95% with 4 of 11 fractions without a significant reduction in viability of hCMEC/D3 cells. Data demonstrated that spores of P. tinctorius might serve as an interesting source of compounds with potential anticancer properties.
Resumo:
Human exposure to persistent organic pollutants (POPs) is a certainty, even to long banned pesticides like o,p′-dichlorodiphenyltrichloroethane (o,p′-DDT), and its metabolites p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE), and p,p′-dichlorodiphenyldichloroethane (p,p′-DDD). POPs are known to be particularly toxic and have been associated with endocrine-disrupting effects in several mammals, including humans even at very low doses. As environmental estrogens, they could play a critical role in carcinogenesis, such as in breast cancer. With the purpose of evaluating their effect on breast cancer biology, o,p′-DDT, p,p′-DDE, and p,p′-DDD (50–1000 nM) were tested on two human breast adenocarcinoma cell lines: MCF-7 expressing estrogen receptor (ER) α and MDA-MB-231 negative for ERα, regarding cell proliferation and viability in addition to their invasive potential. Cell proliferation and viability were not equally affected by these compounds. In MCF-7 cells, the compounds were able to decrease cell proliferation and viability. On the other hand, no evident response was observed in treated MDA-MB-231 cells. Concerning the invasive potential, the less invasive cell line, MCF-7, had its invasion potential significantly induced, while the more invasive cell line MDA-MB-231, had its invasion potential dramatically reduced in the presence of the tested compounds. Altogether, the results showed that these compounds were able to modulate several cancer-related processes, namely in breast cancer cell lines, and underline the relevance of POP exposure to the risk of cancer development and progression, unraveling distinct pathways of action of these compounds on tumor cell biology.