4 resultados para Hopf hypersurfaces

em Instituto Politécnico do Porto, Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho estuda-se a geração de trajectórias em tempo real de um robô quadrúpede. As trajectórias podem dividir-se em duas componentes: rítmica e discreta. A componente rítmica das trajectórias é modelada por uma rede de oito osciladores acoplados, com simetria 4 2 Z  Z . Cada oscilador é modelado matematicamente por um sistema de Equações Diferenciais Ordinárias. A referida rede foi proposta por Golubitsky, Stewart, Buono e Collins (1999, 2000), para gerar os passos locomotores de animais quadrúpedes. O trabalho constitui a primeira aplicação desta rede à geração de trajectórias de robôs quadrúpedes. A derivação deste modelo baseia-se na biologia, onde se crê que Geradores Centrais de Padrões de locomoção (CPGs), constituídos por redes neuronais, geram os ritmos associados aos passos locomotores dos animais. O modelo proposto gera soluções periódicas identificadas com os padrões locomotores quadrúpedes, como o andar, o saltar, o galopar, entre outros. A componente discreta das trajectórias dos robôs usa-se para ajustar a parte rítmica das trajectórias. Este tipo de abordagem é útil no controlo da locomoção em terrenos irregulares, em locomoção guiada (por exemplo, mover as pernas enquanto desempenha tarefas discretas para colocar as pernas em localizações específicas) e em percussão. Simulou-se numericamente o modelo de CPG usando o oscilador de Hopf para modelar a parte rítmica do movimento e um modelo inspirado no modelo VITE para modelar a parte discreta do movimento. Variou-se o parâmetro g e mediram-se a amplitude e a frequência das soluções periódicas identificadas com o passo locomotor quadrúpede Trot, para variação deste parâmetro. A parte discreta foi inserida na parte rítmica de duas formas distintas: (a) como um offset, (b) somada às equações que geram a parte rítmica. Os resultados obtidos para o caso (a), revelam que a amplitude e a frequência se mantêm constantes em função de g. Os resultados obtidos para o caso (b) revelam que a amplitude e a frequência aumentam até um determinado valor de g e depois diminuem à medida que o g aumenta, numa curva quase sinusoidal. A variação da amplitude das soluções periódicas traduz-se numa variação directamente proporcional na extensão do movimento do robô. A velocidade da locomoção do robô varia com a frequência das soluções periódicas, que são identificadas com passos locomotores quadrúpedes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A geração de trajectórias de robôs em tempo real é uma tarefa muito complexa, não existindo ainda um algoritmo que a permita resolver de forma eficaz. De facto, há controladores eficientes para trajectórias previamente definidas, todavia, a adaptação a variações imprevisíveis, como sendo terrenos irregulares ou obstáculos, constitui ainda um problema em aberto na geração de trajectórias em tempo real de robôs. Neste trabalho apresentam-se modelos de geradores centrais de padrões de locomoção (CPGs), inspirados na biologia, que geram os ritmos locomotores num robô quadrúpede. Os CPGs são modelados matematicamente por sistemas acoplados de células (ou neurónios), sendo a dinâmica de cada célula dada por um sistema de equações diferenciais ordinárias não lineares. Assume-se que as trajectórias dos robôs são constituídas por esta parte rítmica e por uma parte discreta. A parte discreta pode ser embebida na parte rítmica, (a.1) como um offset ou (a.2) adicionada às expressões rítmicas, ou (b) pode ser calculada independentemente e adicionada exactamente antes do envio dos sinais para as articulações do robô. A parte discreta permite inserir no passo locomotor uma perturbação, que poderá estar associada à locomoção em terrenos irregulares ou à existência de obstáculos na trajectória do robô. Para se proceder á análise do sistema com parte discreta, será variado o parâmetro g. O parâmetro g, presente nas equações da parte discreta, representa o offset do sinal após a inclusão da parte discreta. Revê-se a teoria de bifurcação e simetria que permite a classificação das soluções periódicas produzidas pelos modelos de CPGs com passos locomotores quadrúpedes. Nas simulações numéricas, usam-se as equações de Morris-Lecar e o oscilador de Hopf como modelos da dinâmica interna de cada célula para a parte rítmica. A parte discreta é modelada por um sistema inspirado no modelo VITE. Medem-se a amplitude e a frequência de dois passos locomotores para variação do parâmetro g, no intervalo [-5;5]. Consideram-se duas formas distintas de incluir a parte discreta na parte rítmica: (a) como um (a.1) offset ou (a.2) somada nas expressões que modelam a parte rítmica, e (b) somada ao sinal da parte rítmica antes de ser enviado às articulações do robô. No caso (a.1), considerando o oscilador de Hopf como dinâmica interna das células, verifica-se que a amplitude e frequência se mantêm constantes para -5Hopf, a amplitude e a frequência têm o mesmo comportamento, crescendo e diminuindo nos intervalos de g [-0.5,0.34] e [0.4,1.83], sendo nos restantes valores de g nulas. Isto traduz-se em variações na extensão do movimento e na velocidade do robô, proporcionais à amplitude e à frequência, respectivamente. Ainda com o oscilador Hopf, no caso (b), a frequência mantêm-se constante enquanto a amplitude diminui para g<0.2 e aumenta para g>0.2. A extensão do movimento varia de forma directamente proporcional à amplitude. No caso das equações de Morris-Lecar, quando a componente discreta é embebida (a.2), a amplitude e a frequência aumentam e depois diminuem para - 0.170.5 Pode concluir-se que: (1) a melhor forma de inserção da parte discreta que menos perturbação insere no robô é a inserção como offset; (2) a inserção da parte discreta parece ser independente do sistema de equações diferenciais ordinárias que modelam a dinâmica interna de cada célula. Como trabalho futuro, é importante prosseguir o estudo das diferentes formas de inserção da parte discreta na parte rítmica do movimento, para que se possa gerar uma locomoção quadrúpede, robusta, flexível, com objectivos, em terrenos irregulares, modelada por correcções discretas aos padrões rítmicos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study exotic patterns appearing in a network of coupled Chen oscillators. Namely, we consider a network of two rings coupled through a “buffer” cell, with Z3×Z5 symmetry group. Numerical simulations of the network reveal steady states, rotating waves in one ring and quasiperiodic behavior in the other, and chaotic states in the two rings, to name a few. The different patterns seem to arise through a sequence of Hopf bifurcations, period-doubling, and halving-period bifurcations. The network architecture seems to explain certain observed features, such as equilibria and the rotating waves, whereas the properties of the chaotic oscillator may explain others, such as the quasiperiodic and chaotic states. We use XPPAUT and MATLAB to compute numerically the relevant states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the peculiar dynamical features of a fractional derivative of complex-order network. The network is composed of two unidirectional rings of cells, coupled through a "buffer" cell. The network has a Z3 × Z5 cyclic symmetry group. The complex derivative Dα±jβ, with α, β ∈ R+ is a generalization of the concept of integer order derivative, where α = 1, β = 0. Each cell is modeled by the Chen oscillator. Numerical simulations of the coupled cell system associated with the network expose patterns such as equilibria, periodic orbits, relaxation oscillations, quasiperiodic motion, and chaos, in one or in two rings of cells. In addition, fixing β = 0.8, we perceive differences in the qualitative behavior of the system, as the parameter c ∈ [13, 24] of the Chen oscillator and/or the real part of the fractional derivative, α ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, are varied. Some patterns produced by the coupled system are constrained by the network architecture, but other features are only understood in the light of the internal dynamics of each cell, in this case, the Chen oscillator. What is more important, architecture and/or internal dynamics?