4 resultados para Histone acetylation
em Instituto Politécnico do Porto, Portugal
Resumo:
Prostate cancer (PCa), a leading cause of cancer-related morbidity and mortality, arises through the acquisition of genetic and epigenetic alterations. Deregulation of histone methyltransferases (HMTs) or demethylases (HDMs) has been associated with PCa development and progression. However, the precise influence of altered HMTs or HDMs expression and respective histone marks in PCa onset and progression remains largely unknown. To clarify the role of HMTs and HDMs in prostate carcinogenesis, expression levels of 37 HMTs and 20 HDMs were assessed in normal prostate and PCa tissue samples by RT-qPCR. SMYD3, SUV39H2, PRMT6, KDM5A, and KDM6A were upregulated, whereas KMT2A-E (MLL1-5) and KDM4B were downregulated in PCa, compared with normal prostate tissues. Remarkably, PRMT6 was the histone modifier that best discriminated normal from tumorous tissue samples. Interestingly, EZH2 and SMYD3 expression levels significantly correlated with less differentiated and more aggressive tumors. Remarkably, SMYD3 expression levels were of independent prognostic value for the prediction of disease-specific survival of PCa patients with clinically localized disease submitted to radical prostatectomy. We concluded that expression profiling of HMTs and HDMs, especially SMYD3, might be of clinical usefulness for the assessment of PCa patients and assist in pre-therapeutic decision-making.
Resumo:
Deregulated expression of histone deacetylases (HDACs) has been implicated in tumorigenesis. Herein, we investigated class I HDACs expression in bladder urothelial cell carcinoma (BUCC), its prognostic value and biological significance. Significantly increased transcript levels of all HDACs were found in BUCC compared to 20 normal mucosas, and these were higher in lower grade and stage tumors. Increased HDAC3 levels were associated with improved patient survival. SiRNA experiments showed decrease cell viability and motility, and increased apoptosis. We concluded that class I HDACs play an important role in bladder carcinogenesis through deregulation of proliferation, migration and apoptosis, constituting putative therapeutic targets
Resumo:
Methamphetamine (METH) is a powerful psychostimulant drug used worldwide for its reinforcing properties. In addition to the classic long-lasting monoaminergic-disrupting effects extensively described in the literature, METH has been consistently reported to increase blood brain barrier (BBB) permeability, both in vivo and in vitro, as a result of tight junction and cytoskeleton disarrangement. Microtubules play a critical role in cell stability, which relies on post-translational modifications such as a-tubulin acetylation. As there is evidence that psychostimulants drugs modulate the expression of histone deacetylases (HDACs), we hypothesized that in endothelial cells METH-mediation of cytoplasmatic HDAC6 activity could affect tubulin acetylation and further contribute to BBB dysfunction. To validate our hypothesis, we exposed the bEnd.3 endothelial cells to increasing doses of METH and verified that itleads to an extensivea-tubulin deacetylation mediated by HDACs activation. Furthermore, since we recently reported that acetyl-L-carnitine (ALC), a natural occurring compound, prevents BBB structural loss in a context of METH exposure, we reasoned that ALC could also preserve the acetylation of microtubules under METH action. The present results confirm that ALC is able to prevent METH-induced deacetylation providing effective protection on microtubule acetylation. Although further investigation is still needed, HDACs regulation may become a new therapeutic target for ALC.
Resumo:
The present study aimed to develop a pre-endothelialized chitosan (CH) porous hollowed scaffold for application in spinal cord regenerative therapies. CH conduits with different degrees of acetylation (DA; 4% and 15%) were prepared, characterized (microstructure, porosity and water uptake) and functionalized with a recombinant fragment of human fibronectin (rhFNIII7–10). Immobilized rhFNIII7–10 was characterized in terms of amount (125I-radiolabelling), exposure of cell-binding domains (immunofluorescence) and ability to mediate endothelial cell (EC) adhesion and cytoskeletal rearrangement. Functionalized conduits revealed a linear increase in immobilized rhFNIII7–10 with rhFNIII7–10 concentration, and, for the same concentration, higher amounts of rhFNIII7–10 on DA 4% compared with DA 15%. Moreover, rhFNIII7–10 concentrations as low as 5 and 20 lgml 1 in the coupling reaction were shown to provide DA 4% and 15% scaffolds, respectively, with levels of exposed cell-binding domains exceeding those observed on the control (DA 4% scaffolds incubated in a 20 lgml 1 human fibronectin solution). These grafting conditions proved to be effective in mediating EC adhesion/cytoskeletal organization on CH with DA 4% and 15%, without affecting the endothelial angiogenic potential. rhFNIII7–10 grafting to CH could be a strategy of particular interest in tissue engineering applications requiring the use of endothelialized porous matrices with tunable degradation rates.