4 resultados para High-affinity nitrate transporters
em Instituto Politécnico do Porto, Portugal
Resumo:
As respostas pós-juncionais mediadas por adrenorreceptores β2 (ARβ2), responsáveis pelo relaxamento do músculo liso, na veia safena do cão, estão ausentes à nascença. Pelo contrário, no rato recém-nascido já se verifica a estimulação da adenilil ciclase pela activação dos ARβ2. Não existem ainda estudos no coelho recém-nascido. O principal objectivo deste trabalho é avaliar as respostas pós-juncionais mediadas pelos ARβ2 em coelhos recém-nascidos e jovens e relacionar essas respostas com a adrenalina produzida nas glândulas supra-renais. Traçaram-se curvas de dose-resposta à isoprenalina (agonista β) utilizando-se anéis de aorta montados em banho de órgãos isolados ligado a um transdutor de força isométrica. As catecolaminas das supra-renais foram quantificadas por RP-HPLC-ED. Em aortas pré-contraídas com fenilefrina (agonista α1), a isoprenalina causou relaxamento total apenas em coelhos recém-nascidos (n=10). O relaxamento máximo nos coelhos jovens foi de 21±4% (n=23). A potência da isoprenalina foi maior nos recém-nascidos (EC50=1.15×10-8±7.2×10-10 M, n=10) do que nos coelhos jovens (EC50=1.29×10-7 ±4.7×10-9 M, n=23). O relaxamento máximo com isoprenalina, em aortas pré-contraídas com prostaglandina F2α (PGF2α), no grupo de coelhos recém-nascidos foi de 95±3.6% (n=16). O relaxamento máximo nos coelhos jovens foi de 43.7±8.6% (n=9). Na pré-contracção com PGF2α a potência da isoprenalina registou-se maior nos recémnascidos (EC50=9.59×10-9±4.0×10-10 M, n=16) do que nos coelhos jovens (EC50=2.13×10- 8±3.8×10-9 M, n=9), estando concordante com os resultados da pré-contracção com fenilefrina. Nas supra-renais dos recém-nascidos, o conteúdo de noradrenalina foi de 586±128 nmol/mg e da adrenalina foi de 1915±356 nmol/mg (n=4) e nos coelhos jovens foi de 112±12 nmol/mg e de 3644±403 nmol/mg (n=6), respectivamente. As respostas mediadas por ARβ2 no coelho desenvolvem-se mais cedo do que no cão, pois já estão presentes no nascimento. Tal como no rato, no coelho a adrenalina é já a catecolamina em maior quantidade à nascença, enquanto no cão é vestigial. Há uma relação temporal entre a síntese da adrenalina, a única catecolamina biogénica com alta afinidade para os ARβ2 e a maturação das respostas pós-juncionais mediadas por esses receptores. Um protocolo para experiências futuras destinadas a testar esta hipótese, com base no knockdown da Feniletanolamina-N-metiltransferase por RNAi foi elaborado e incluído neste documento.
Resumo:
Chemical sensors and biosensors are widely used to detect various kinds of protein target biomolecules. Molecularly Imprinted Polymers (MIPs) have raised great interest in this area, because these act as antibody-like recognition materials, with high affinity to the template molecule. Compared to natural antibodies, these are also of lower cost and higher stability. There are different types of supports used to carry MIP materials, mostly of these made of gold, favourably assembled on a Screen Printed Electrode (SPE) strategy. For this work a new kind of support for the sensing layer was developed: conductive paper. This support was made by modifying first cellulose paper with paraffin wax (to make it waterproof), and casting a carbon-ink on it afterwards, to turn it conductive. The SPAM approach previously reported in1 was employed herein to assemble to MIP sensing material on the conductive paper. The selected charged monomers were (vinylbenzyl) trimethlammonium chloride (positive charge) or vinylbenzoic acid (negative charge), used to generate binding positions with single-type charge (positive or negative). The non-specific binding area of the MIP layer was assembled by chronoamperometry-assisted polymerization (at 1 V, for 60, 120 or 180 seconds) of vinylbenzoate, cross-linked with ethylene glycol vinyl ether. The BSA biomolecules lying within the polymeric matrix were removed by Proteinase K action. All preparation stages of the MIP assembly were followed by FTIR, Raman spectroscopy and, electrochemical analysis. In general, the best results were obtained for longer polymerization times and positively charged binding sites (which was consistent with a negatively-charged protein under physiological pH, as BSA). Linear responses against BSA concentration ranged from 0.005 to 100 mg/mL, in PBS buffer standard solutions. The sensor was further calibrated in standard solutions that were prepared in synthetic or real urine, and the analytical response became more sensitive and stable. Compared to the literature, the detection capability of the developed device is better than most of the reported electrodes. Overall, the simplicity, low cost and good analytical performance of the BSA SPE device, prepared with positively charged binding positions, seems a suitable approach for practical application in clinical context. Further studies with real samples are required, as well as gathering with electronic-supporting devices to allow on-site readings.
Resumo:
The need to increase agricultural yield led, among others, to an increase in the consumption of nitrogen based fertilizers. As a consequence, there are excessive concentrations of nitrates, the most abundant of the reactive nitrogen (Nr) species, in several areas of the world. The demographic changes and projected population growth for the next decades, and the economic shifts which are already shaping the near future are powerful drivers for a further intensification in the use of fertilizers, with a predicted increase of the nitrogen loads in soils. Nitrate easily diffuses in the subsurface environments, portraying high mobility in soils. Moreover, the presence of high nitrate loads in water has the potential to cause an array of health dysfunctions, such as methemoglobinemia and several cancers. Permeable Reactive Barriers (PRB) placed strategically relatively to the nitrate source constitute an effective technology to tackle nitrate pollution. Ergo, PRB avoid various adverse impacts resulting from the displacement of reactive nitrogen downstream along water bodies. A four stages literature review was carried out in 34 databases. Initially, a set of pertinent key words were identified to perform the initial databases searches. Then, the synonyms of those initial key words were used to carry out a second set of databases searches. The third stage comprised the identification of other additional relevant terms from the research papers identified in the previous two stages. Again, databases searches were performed with this third set of key words. The final step consisted of the identification of relevant papers from the bibliography of the relevant papers identified in the previous three stages of the literature review process. The set of papers identified as relevant for in-depth analysis were assessed considering a set of relevant characterization variables.
Resumo:
The present work has as objective to contribute for the elucidation of the mechanism associated with Pb detoxification, using the yeast Saccharomyces cerevisiae as a model organism. The deletion of GTT1 or GTT2 genes, coding for functional glutathione transferases (GST) enzymes in S. cerevisiae, caused an increased susceptibility to high Pb concentrations (500-1000 μmol L(-1)). These results suggest that the formation of glutathione-Pb conjugate (GS-Pb), dependent of GSTs, is important in Pb detoxification. The involvement of ATP-binding cassette (ABC) vacuolar transporters, belonging to class C subfamily (ABCC) in vacuolar compartmentalization of Pb, was evaluated. For this purpose, mutant strains disrupted in YCF1, VMR1, YBT1 or BPT 1 genes were used. All mutants tested, without vacuolar ABCC transporters, presented an increased sensitivity to 500-1000 μmol L(-1) Pb comparative to wild-type strain. Taken together, the obtained results suggest that Pb detoxification, by vacuolar compartmentalization, can occur as a result of the concerted action of GSTs and vacuolar ABCC transporters. Pb is conjugated with glutathione, catalysed by glutathione transferases and followed to the transport of GS-Pb conjugate to the vacuole by ABCC transporters.