44 resultados para Heterogeneous platforms
em Instituto Politécnico do Porto, Portugal
Resumo:
Heterogeneous multicore platforms are becoming an interesting alternative for embedded computing systems with limited power supply as they can execute specific tasks in an efficient manner. Nonetheless, one of the main challenges of such platforms consists of optimising the energy consumption in the presence of temporal constraints. This paper addresses the problem of task-to-core allocation onto heterogeneous multicore platforms such that the overall energy consumption of the system is minimised. To this end, we propose a two-phase approach that considers both dynamic and leakage energy consumption: (i) the first phase allocates tasks to the cores such that the dynamic energy consumption is reduced; (ii) the second phase refines the allocation performed in the first phase in order to achieve better sleep states by trading off the dynamic energy consumption with the reduction in leakage energy consumption. This hybrid approach considers core frequency set-points, tasks energy consumption and sleep states of the cores to reduce the energy consumption of the system. Major value has been placed on a realistic power model which increases the practical relevance of the proposed approach. Finally, extensive simulations have been carried out to demonstrate the effectiveness of the proposed algorithm. In the best-case, savings up to 18% of energy are reached over the first fit algorithm, which has shown, in previous works, to perform better than other bin-packing heuristics for the target heterogeneous multicore platform.
Resumo:
Consider the problem of scheduling a set of implicit-deadline sporadic tasks to meet all deadlines on a two-type heterogeneous multiprocessor platform where a task may request at most one of |R| shared resources. There are m1 processors of type-1 and m2 processors of type-2. Tasks may migrate only when requesting or releasing resources. We present a new algorithm, FF-3C-vpr, which offers a guarantee that if a task set is schedulable to meet deadlines by an optimal task assignment scheme that only allows tasks to migrate when requesting or releasing a resource, then FF-3Cvpr also meets deadlines if given processors 4+6*ceil(|R|/min(m1,m2)) times as fast. As far as we know, it is the first result for resource sharing on heterogeneous platforms with provable performance.
Resumo:
A velocidade de difusão de conteúdos numa plataforma web, assume uma elevada relevância em serviços onde a informação se pretende atualizada e em tempo real. Este projeto de Mestrado, apresenta uma abordagem de um sistema distribuído de recolher e difundir resultados em tempo real entre várias plataformas, nomeadamente sistemas móveis. Neste contexto, tempo real entende-se como uma diferença de tempo nula entre a recolha e difusão, ignorando fatores que não podem ser controlados pelo sistema, como latência de comunicação e tempo de processamento. Este projeto tem como base uma arquitetura existente de processamento e publicação de resultados desportivos, que apresentava alguns problemas relacionados com escalabilidade, segurança, tempos de entrega de resultados longos e sem integração com outras plataformas. Ao longo deste trabalho procurou-se investigar fatores que condicionassem a escalabilidade de uma aplicação web dando ênfase à implementação de uma solução baseada em replicação e escalabilidade horizontal. Procurou-se também apresentar uma solução de interoperabilidade entre sistemas e plataformas heterogêneas, mantendo sempre elevados níveis de performance e promovendo a introdução de plataformas móveis no sistema. De várias abordagens existentes para comunicação em tempo real sobre uma plataforma web, adotou-se um implementação baseada em WebSocket que elimina o tempo desperdiçado entre a recolha de informação e sua difusão. Neste projeto é descrito o processo de implementação da API de recolha de dados (Collector), da biblioteca de comunicação com o Collector, da aplicação web (Publisher) e sua API, da biblioteca de comunicação com o Publisher e por fim a implementação da aplicação móvel multi-plataforma. Com os componentes criados, avaliaram-se os resultados obtidos com a nova arquitetura de forma a aferir a escalabilidade e performance da solução criada e sua adaptação ao sistema existente.
Resumo:
Consider the problem of scheduling a set of implicit-deadline sporadic tasks to meet all deadlines on a heterogeneous multiprocessor platform. We use an algorithm proposed in [1] (we refer to it as LP-EE) from state-of-the-art for assigning tasks to heterogeneous multiprocessor platform and (re-)prove its performance guarantee but for a stronger adversary.We conjecture that if a task set can be scheduled to meet deadlines on a heterogeneous multiprocessor platform by an optimal task assignment scheme that allows task migrations then LP-EE meets deadlines as well with no migrations if given processors twice as fast. We illustrate this with an example.
Resumo:
Consider the problem of scheduling a set of implicit-deadline sporadic tasks to meet all deadlines on a heterogeneous multiprocessor platform. We consider a restricted case where the maximum utilization of any task on any processor in the system is no greater than one. We use an algorithm proposed in [1] (we refer to it as LP-EE) from state-of-the-art for assigning tasks to heterogeneous multiprocessor platform and (re-)prove its performance guarantee for this restricted case but for a stronger adversary. We show that if a task set can be scheduled to meet deadlines on a heterogeneous multiprocessor platform by an optimal task assignment scheme that allows task migrations then LP-EE meets deadlines as well with no migrations if given processors twice as fast.
Resumo:
Presented at Work in Progress Session, IEEE Real-Time Systems Symposium (RTSS 2015). 1 to 4, Dec, 2015. San Antonio, U.S.A..
Resumo:
Electricity markets worldwide are complex and dynamic environments with very particular characteristics. These are the result of electricity markets’ restructuring and evolution into regional and continental scales, along with the constant changes brought by the increasing necessity for an adequate integration of renewable energy sources. The rising complexity and unpredictability in electricity markets has increased the need for the intervenient entities in foreseeing market behaviour. Market players and regulators are very interested in predicting the market’s behaviour. Market players need to understand the market behaviour and operation in order to maximize their profits, while market regulators need to test new rules and detect market inefficiencies before they are implemented. The growth of usage of simulation tools was driven by the need for understanding those mechanisms and how the involved players' interactions affect the markets' outcomes. Multi-agent based software is particularly well fitted to analyse dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. Several modelling tools directed to the study of restructured wholesale electricity markets have emerged. Still, they have a common limitation: the lack of interoperability between the various systems to allow the exchange of information and knowledge, to test different market models and to allow market players from different systems to interact in common market environments. This dissertation proposes the development and implementation of ontologies for semantic interoperability between multi-agent simulation platforms in the scope of electricity markets. The added value provided to these platforms is given by enabling them sharing their knowledge and market models with other agent societies, which provides the means for an actual improvement in current electricity markets studies and development. The proposed ontologies are implemented in MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) and tested through the interaction between MASCEM agents and agents from other multi-agent based simulators. The implementation of the proposed ontologies has also required a complete restructuring of MASCEM’s architecture and multi-agent model, which is also presented in this dissertation. The results achieved in the case studies allow identifying the advantages of the novel architecture of MASCEM, and most importantly, the added value of using the proposed ontologies. They facilitate the integration of independent multi-agent simulators, by providing a way for communications to be understood by heterogeneous agents from the various systems.
Resumo:
As more and more digital resources are available, finding the appropriate document becomes harder. Thus, a new kind of tools, able to recommend the more appropriated resources according the user needs, becomes even more necessary. The current project implements an intelligent recommendation system for elearning platforms. The recommendations are based on one hand, the performance of the user during the training process and on the other hand, the requests made by the user in the form of search queries. All information necessary for decision-making process of recommendation will be represented in the user model. This model will be updated throughout the target user interaction with the platform.
Resumo:
Em Portugal, as instituições de ensino superior dispõem de plataformas de e-learning que reflectem uma mais-valia para o processo de ensino-aprendizagem. No entanto, estas plataformas caracterizam-se por serem de âmbito privado expondo, desta forma, a tímida abertura das instituições na partilha do seu conhecimento, como também dos seus recursos. O paradigma Cloud Computing surge como uma solução, por exemplo, para a criação de uma federação de nuvens capaz de contemplar soluções heterogéneas, garantindo a interoperabilidade entre as plataformas das várias instituições de ensino, e promovendo os objectivos propostos pelo Processo de Bolonha, nomeadamente no que se refere à partilha de informação, de plataformas e serviços e promoção de projectos comuns. Neste âmbito, é necessário desenvolver ferramentas que permitam aos decisores ponderar as mais-valias deste novo paradigma. Assim, é conveniente quantificar o retorno esperado para o investimento, em recursos humanos e tecnológicos, exigido pelo modelo Cloud Computing. Este trabalho contribui para o estudo da avaliação do retorno do investimento (ROI) em infra-estruturas e serviços TIC (Tecnologias de Informação e Comunicação), resultante da análise de diferentes cenários relativos à introdução do paradigma Cloud Computing. Para tal, foi proposta uma metodologia de análise baseada num questionário, distribuído por diversas instituições de ensino superior portuguesas, contendo um conjunto de questões que permitiram identificar indicadores, e respectivas métricas, a usar na elaboração de modelos de estimação do ROI.
Resumo:
The constant evolution of the Internet and its increasing use and subsequent entailing to private and public activities, resulting in a strong impact on their survival, originates an emerging technology. Through cloud computing, it is possible to abstract users from the lower layers to the business, focusing only on what is most important to manage and with the advantage of being able to grow (or degrades) resources as needed. The paradigm of cloud arises from the necessity of optimization of IT resources evolving in an emergent and rapidly expanding and technology. In this regard, after a study of the most common cloud platforms and the tactic of the current implementation of the technologies applied at the Institute of Biomedical Sciences of Abel Salazar and Faculty of Pharmacy of Oporto University a proposed evolution is suggested in order adorn certain requirements in the context of cloud computing.
Resumo:
Zero valent iron (ZVI) has been extensively used as a reactive medium for the reduction of Cr(VI) to Cr(III) in reactive permeable barriers. The kinetic rate depends strongly on the superficial oxidation of the iron particles used and the preliminary washing of ZVI increases the rate. The reaction has been primarily modelled using a pseudo-first-order kinetics which is inappropriate for a heterogeneous reaction. We assumed a shrinking particle type model where the kinetic rate is proportional to the available iron surface area, to the initial volume of solution and to the chromium concentration raised to a power ˛ which is the order of the chemical reaction occurring at surface. We assumed α= 2/3 based on the likeness to the shrinking particle models with spherical symmetry. Kinetics studies were performed in order to evaluate the suitability of this approach. The influence of the following parameters was experimentally studied: initial available surface area, chromium concentration, temperature and pH. The assumed order for the reaction was confirmed. In addition, the rate constant was calculated from data obtained in different operating conditions. Digital pictures of iron balls were periodically taken and the image treatment allowed for establishing the time evolution of their size distribution.
Resumo:
Broadcast networks that are characterised by having different physical layers (PhL) demand some kind of traffic adaptation between segments, in order to avoid traffic congestion in linking devices. In many LANs, this problem is solved by the actual linking devices, which use some kind of flow control mechanism that either tell transmitting stations to pause (the transmission) or just discard frames. In this paper, we address the case of token-passing fieldbus networks operating in a broadcast fashion and involving message transactions over heterogeneous (wired or wireless) physical layers. For the addressed case, real-time and reliability requirements demand a different solution to the traffic adaptation problem. Our approach relies on the insertion of an appropriate idle time before a station issuing a request frame. In this way, we guarantee that the linking devices’ queues do not increase in a way that the timeliness properties of the overall system turn out to be unsuitable for the targeted applications.
Resumo:
A preliminary version of this paper appeared in Proceedings of the 31st IEEE Real-Time Systems Symposium, 2010, pp. 239–248.
Resumo:
LLF (Least Laxity First) scheduling, which assigns a higher priority to a task with a smaller laxity, has been known as an optimal preemptive scheduling algorithm on a single processor platform. However, little work has been made to illuminate its characteristics upon multiprocessor platforms. In this paper, we identify the dynamics of laxity from the system’s viewpoint and translate the dynamics into LLF multiprocessor schedulability analysis. More specifically, we first characterize laxity properties under LLF scheduling, focusing on laxity dynamics associated with a deadline miss. These laxity dynamics describe a lower bound, which leads to the deadline miss, on the number of tasks of certain laxity values at certain time instants. This lower bound is significant because it represents invariants for highly dynamic system parameters (laxity values). Since the laxity of a task is dependent of the amount of interference of higher-priority tasks, we can then derive a set of conditions to check whether a given task system can go into the laxity dynamics towards a deadline miss. This way, to the author’s best knowledge, we propose the first LLF multiprocessor schedulability test based on its own laxity properties. We also develop an improved schedulability test that exploits slack values. We mathematically prove that the proposed LLF tests dominate the state-of-the-art EDZL tests. We also present simulation results to evaluate schedulability performance of both the original and improved LLF tests in a quantitative manner.
Resumo:
Consider the problem of determining a task-toprocessor assignment for a given collection of implicit-deadline sporadic tasks upon a multiprocessor platform in which there are two distinct kinds of processors. We propose a polynomialtime approximation scheme (PTAS) for this problem. It offers the following guarantee: for a given task set and a given platform, if there exists a feasible task-to-processor assignment, then given an input parameter, ϵ, our PTAS succeeds, in polynomial time, in finding such a feasible task-to-processor assignment on a platform in which each processor is 1+3ϵ times faster. In the simulations, our PTAS outperforms the state-of-the-art PTAS [1] and also for the vast majority of task sets, it requires significantly smaller processor speedup than (its upper bound of) 1+3ϵ for successfully determining a feasible task-to-processor assignment.