6 resultados para Hedge Cambial

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese apresentada no Instituto de Contabilidade e Administração do Porto como requisito para obtenção do título de Mestre em Contabilidade e Finanças. Orientador: Mestre Luís Miguel Pereira Gomes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introdução PARTE 1 - Noções gerais e metodologias de medição baseadas nos diferenciais 1.1. Noção de risco 1.2. Principais riscos na actividade bancária 1.3. Modelos de quantificação do risco da taxa de juro 1.4. Modelos para quantificar o risco de reinvestimento 1.5. O modelo de diferencial de duração (DD) 1.6. Modelos para quantificar o risco de preço 1.7. Diferencial de duração da situação líquida 1.8. Vantagens/desvantagens dos modelos de duração (resultado e situação líquida) 1.9. Perspectivas e conclusão sobre os Modelos de Diferencial de Fundos e Duração PARTE II - Conceito de VAR 2.1 A noção de VAR (Valor em Risco) 2.2 Conceitos-chave dos modelos VAR 2.3 Fórmula de cálculo da duração modificada 2.4 A importância da duração para determinar a sensibilidade da taxa de juro 2.5 A problemática da convexidade 2.6 O conceitos de volatilidade 2.7 A agregação dos riscos 2.8 O tratamento do VAR com a matriz de correlação do andamento das taxas de juro 2.9 Esquemas sequenciais de cálculo da volatilidade preço - taxa de juro e VAR PARTE III - Casos práticos de VAR 3.1 As relações entre as taxas a prazo (forward) e as taxas à vista (spot) 3.2 Desenvolvimento de um caso prático 3.3 Cálculo do diferencial de duração e do VAR aplicado à situação líquida 3.4 Admissão de pressupostos 3.5 Os diferentes VAR´s 3.6 A importância do VAR no contexto de gestão de risco numa instituição 3.7 Os modelos de simulação estática e dinâmica PARTE IV - Situações especiais 4.1 O tratamento dos FRA´s e futuros 4.2 O tratamento das opções 4.3 O tratamento dos swap´s taxa de juro 4.4 A aplicação do modelo VAR aos riscos taxa de juro e cambial 4.5 A utilização dos modelos VAR na afectação do capital (RAROC) 4.6 A análise da instruçaõ nº 19/2005 ANEXOS Anexo 1 - Instrução nº 19/2005: risco de taxa de juro da carteira bancária Anexo 2 - Instrução nº 72/96: Princípios orientadores para ocontrolo do risco da taxa de juro Anexo 3 - Anexo V do Aviso nº 7/96 Conclusão Índice dos Quadros Bibliografia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Short-term risk management is highly dependent on long-term contractual decisions previously established; risk aversion factor of the agent and short-term price forecast accuracy. Trying to give answers to that problem, this paper provides a different approach for short-term risk management on electricity markets. Based on long-term contractual decisions and making use of a price range forecast method developed by the authors, the short-term risk management tool presented here has as main concern to find the optimal spot market strategies that a producer should have for a specific day in function of his risk aversion factor, with the objective to maximize the profits and simultaneously to practice the hedge against price market volatility. Due to the complexity of the optimization problem, the authors make use of Particle Swarm Optimization (PSO) to find the optimal solution. Results from realistic data, namely from OMEL electricity market, are presented and discussed in detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the optimal involvement in derivatives electricity markets of a power producer to hedge against the pool price volatility. To achieve this aim, a swarm intelligence meta-heuristic optimization technique for long-term risk management tool is proposed. This tool investigates the long-term opportunities for risk hedging available for electric power producers through the use of contracts with physical (spot and forward contracts) and financial (options contracts) settlement. The producer risk preference is formulated as a utility function (U) expressing the trade-off between the expectation and the variance of the return. Variance of return and the expectation are based on a forecasted scenario interval determined by a long-term price range forecasting model. This model also makes use of particle swarm optimization (PSO) to find the best parameters allow to achieve better forecasting results. On the other hand, the price estimation depends on load forecasting. This work also presents a regressive long-term load forecast model that make use of PSO to find the best parameters as well as in price estimation. The PSO technique performance has been evaluated by comparison with a Genetic Algorithm (GA) based approach. A case study is presented and the results are discussed taking into account the real price and load historical data from mainland Spanish electricity market demonstrating the effectiveness of the methodology handling this type of problems. Finally, conclusions are dully drawn.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado Apresentado ao Instituto de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Contabilidade e Finanças, sob orientação de Mestre José Carlos Pedro

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Following the deregulation experience of retail electricity markets in most countries, the majority of the new entrants of the liberalized retail market were pure REP (retail electricity providers). These entities were subject to financial risks because of the unexpected price variations, price spikes, volatile loads and the potential for market power exertion by GENCO (generation companies). A REP can manage the market risks by employing the DR (demand response) programs and using its' generation and storage assets at the distribution network to serve the customers. The proposed model suggests how a REP with light physical assets, such as DG (distributed generation) units and ESS (energy storage systems), can survive in a competitive retail market. The paper discusses the effective risk management strategies for the REPs to deal with the uncertainties of the DAM (day-ahead market) and how to hedge the financial losses in the market. A two-stage stochastic programming problem is formulated. It aims to establish the financial incentive-based DR programs and the optimal dispatch of the DG units and ESSs. The uncertainty of the forecasted day-ahead load demand and electricity price is also taken into account with a scenario-based approach. The principal advantage of this model for REPs is reducing the risk of financial losses in DAMs, and the main benefit for the whole system is market power mitigation by virtually increasing the price elasticity of demand and reducing the peak demand.