5 resultados para Heavy metal distribution

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we isolated from soil and characterized several bacterial strains capable of either resisting high concentrations of heavy metals (Cd2+ or Hg2+ or Pb2+) or degrading the common soil and groundwater pollutants MTBE (methyl-tertbutyl ether) or TCE (trichloroethylene). We then used soil microcosms exposed to MTBE (50 mg/l) or TCE (50 mg/l) in the presence of one heavy metal (Cd 10 ppm or Hg 5 ppm or Pb 50 or 100 ppm) and two bacterial isolates at a time, a degrader plus a metalresistant strain. Some of these two-membered consortia showed degradation efficiencies well higher (49–182% higher) than those expected under the conditions employed, demonstrating the occurrence of a synergetic relationship between the strains used. Our results show the efficacy of the dual augmentation strategy for MTBE and TCE bioremediation in the presence of heavy metals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Heavy metal pollution is a matter of concern in industrialised countries. Contrary to organic pollutants, heavy metals are not metabolically degraded. This fact has two main consequences: its bioremediation requires another strategy and heavy metals can be indefinitely recycled. Yeast cells of Saccharomyces cerevisiae are produced at high amounts as a by-product of brewing industry constituting a cheap raw material. In the present work, the possibility of valorising this type of biomass in the bioremediation of real industrial effluents containing heavy metals is reviewed. Given the autoaggregation capacity (flocculation) of brewing yeast cells, a fast and off-cost yeast separation is achieved after the treatment of metal-laden effluent, which reduces the costs associated with the process. This is a critical issue when we are looking for an effective, eco-friendly, and low-cost technology. The possibility of the bioremediation of industrial effluents linked with the selective recovery of metals, in a strategy of simultaneous minimisation of environmental hazard of industrial wastes with financial benefits from reselling or recycling the metals, is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work explores the use of fluorescent probes to evaluate the responses of the green alga Pseudokirchneriella subcapitata to the action of three nominal concentrations of Cd(II), Cr(VI), Cu(II) and Zn(II) for a short time (6 h). The toxic effect of the metals on algal cells was monitored using the fluorochromes SYTOX Green (SG, membrane integrity), fluorescein diacetate (FDA, esterase activity) and rhodamine 123 (Rh123, mitochondrial membrane potential). The impact of metals on chlorophyll a (Chl a) autofluorescence was also evaluated. Esterase activity was the most sensitive parameter. At the concentrations studied, all metals induced the loss of esterase activity. SG could be used to effectively detect the loss of membrane integrity in algal cells exposed to 0.32 or 1.3 μmol L−1 Cu(II). Rh123 revealed a decrease in the mitochondrial membrane potential of algal cells exposed to 0.32 and 1.3 μmol L−1 Cu(II), indicating that mitochondrial activity was compromised. Chl a autofluorescence was also affected by the presence of Cr(VI) and Cu(II), suggesting perturbation of photosynthesis. In conclusion, the fluorescence-based approach was useful for detecting the disturbance of specific cellular characteristics. Fluorescent probes are a useful diagnostic tool for the assessment of the impact of toxicants on specific targets of P. subcapitata algal cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work describes the optimization of a short-term assay, based on the inhibition of the esterase activity of the alga Pseudokirchneriella subcapitata, in a microplate format. The optimization of the staining procedure showed that the incubation of the algal cells with 20 μmolL−1 fluorescein diacetate (FDA) for 40 min allowed discrimination between metabolic active and inactive cells. The shortterm assay was tested using Cu as toxicant. For this purpose, algal cells, in the exponential or stationary phase of growth, were exposed to the heavy metal in growing conditions. After 3 or 6 h, cells were subsequently stained with FDA, using the optimized procedure. For Cu, the 3- and 6-h EC50 values, based on the inhibition of the esterase activity of algal cells in the exponential phase of growth, were 209 and 130 μg L−1, respectively. P. subcapitata cells, in the stationary phase of growth, displayed higher effective concentration values than those observed in the exponential phase. The 3- and 6-h EC50 values for Cu, for cells in the stationary phase, were 443 and 268 μgL−1, respectively. This short-term microplate assay showed to be a rapid endpoint for testing toxicity using the alga P. subcapitata. The small volume required, the simplicity of the assay (no washing steps), and the automatic reading of the fluorescence make the assay particularly well suited for the evaluation of the toxicity of a high number of environmental samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work has as objective to contribute for the elucidation of the mechanism associated with Pb detoxification, using the yeast Saccharomyces cerevisiae as a model organism. The deletion of GTT1 or GTT2 genes, coding for functional glutathione transferases (GST) enzymes in S. cerevisiae, caused an increased susceptibility to high Pb concentrations (500-1000 μmol L(-1)). These results suggest that the formation of glutathione-Pb conjugate (GS-Pb), dependent of GSTs, is important in Pb detoxification. The involvement of ATP-binding cassette (ABC) vacuolar transporters, belonging to class C subfamily (ABCC) in vacuolar compartmentalization of Pb, was evaluated. For this purpose, mutant strains disrupted in YCF1, VMR1, YBT1 or BPT 1 genes were used. All mutants tested, without vacuolar ABCC transporters, presented an increased sensitivity to 500-1000 μmol L(-1) Pb comparative to wild-type strain. Taken together, the obtained results suggest that Pb detoxification, by vacuolar compartmentalization, can occur as a result of the concerted action of GSTs and vacuolar ABCC transporters. Pb is conjugated with glutathione, catalysed by glutathione transferases and followed to the transport of GS-Pb conjugate to the vacuole by ABCC transporters.