2 resultados para Haugen, Anders
em Instituto Politécnico do Porto, Portugal
Resumo:
Polyaromatic hydrocarbon (PAH) sorption to soil is a key process deciding the transport and fate of PAH, and potential toxic impacts in the soil and groundwater ecosystems, for example in connection with atmospheric PAH deposition on soils. There are numerous studies on PAH sorption in relatively low organic porous media such as urban soils and groundwater sediments, but less attention has been given to cultivated soils. In this study, the phenanthrene partition coefficient, KD (liter per kilogram), was measured on 143 cultivated Danish soils (115 topsoils, 0–0.25-m soil depth and 28 subsoils, 0.25–1-m depth) by the single-point adsorption method. The organic carbon partition coefficient, KOC (liter per kilogram) for topsoils was found generally to fall between the KOC values estimated by the two most frequently used models for PAH partitioning, the Abdul et al. (Hazardous Waste & Hazardous Materials 4(3):211– 222, 1987) model and Karickhoff et al. (Water Research 13:241–248, 1979) model. A less-recognized model by Karickhoff (Chemosphere 10:833–846, 1981), yielding a KOC of 14,918 Lkg−1, closely corresponded to the average measured KOC value for the topsoils, and this model is therefore recommended for prediction of phenanthrene mobility in cultivated topsoils. For lower subsoils (0.25–1-m depth), the KOC values were closer to and mostly below the estimate by the Abdul et al. (Hazardous Waste & Hazardous Materials 4(3):211–222, 1987) model. This implies a different organic matter composition and higher PAH sorption strength in cultivated topsoils, likely due to management effects including more rapid carbon turnover. Finally, we applied the recent Dexter et al. (Geoderma 144:620–627, 2008) theorem, and calculated the complexed organic carbon and non-complexed organic carbon fractions (COC and NCOC, grams per gram). Multiple regression analyses showed that the NCOC-based phenanthrene partition coefficient (KNCOC) could be markedly higher than the COCbased partition coefficient (KCOC) for soils with a clay/OC ratio <10. This possibly higher PAH sorption affinity to the NCOC fraction needs further investigations to develop more realistic and accurate models for PAH mobility and effects in the environment, also with regard to colloid-facilitated PAH transport.
Resumo:
Abstract: Preferential flow and transport through macropores affect plant water use efficiency and enhance leaching of agrochemicals and the transport of colloids, thereby increasing the risk for contamination of groundwater resources. The effects of soil compaction, expressed in terms of bulk density (BD), and organic carbon (OC) content on preferential flow and transport were investigated using 150 undisturbed soil cores sampled from 15 × 15–m grids on two field sites. Both fields had loamy textures, but one site had significantly higher OC content. Leaching experiments were conducted in each core by applying a constant irrigation rate of 10 mm h−1 with a pulse application of tritium tracer. Five percent tritium mass arrival times and apparent dispersivities were derived from each of the tracer breakthrough curves and correlated with texture, OC content, and BD to assess the spatial distribution of preferential flow and transport across the investigated fields. Soils from both fields showed strong positive correlations between BD and preferential flow. Interestingly, the relationships between BD and tracer transport characteristics were markedly different for the two fields, although the relationship between BD and macroporosity was nearly identical. The difference was likely caused by the higher contents of fines and OC at one of the fields leading to stronger aggregation, smaller matrix permeability, and a more pronounced pipe-like pore system with well-aligned macropores.