168 resultados para Hard combinatorial scheduling

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding he management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding the management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scheduling problem is considered in complexity theory as a NP-hard combinatorial optimization problem. Meta-heuristics proved to be very useful in the resolution of this class of problems. However, these techniques require parameter tuning which is a very hard task to perform. A Case-based Reasoning module is proposed in order to solve the parameter tuning problem in a Multi-Agent Scheduling System. A computational study is performed in order to evaluate the proposed CBR module performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A large part of power dissipation in a system is generated by I/O devices. Increasingly these devices provide power saving mechanisms, inter alia to enhance battery life. While I/O device scheduling has been studied in the past for realtime systems, the use of energy resources by these scheduling algorithms may be improved. These approaches are crafted considering a very large overhead of device transitions. Technology enhancements have allowed the hardware vendors to reduce the device transition overhead and energy consumption. We propose an intra-task device scheduling algorithm for real time systems that allows to shut-down devices while ensuring system schedulability. Our results show an energy gain of up to 90% when compared to the techniques proposed in the state-of-the-art.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Presented at 21st IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2015). 19 to 21, Aug, 2015, pp 122-131. Hong Kong, China.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scheduling resolution requires the intervention of highly skilled human problemsolvers. This is a very hard and challenging domain because current systems are becoming more and more complex, distributed, interconnected and subject to rapidly changing. A natural Autonomic Computing evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference. This paper addresses the resolution of complex scheduling problems using cooperative negotiation. A Multi-Agent Autonomic and Meta-heuristics based framework with self-configuring capabilities is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter addresses the resolution of scheduling in manufacturing systems subject to perturbations. The planning of Manufacturing Systems involves frequently the resolution of a huge amount and variety of combinatorial optimisation problems with an important impact on the performance of manufacturing organisations. Examples of those problems are the sequencing and scheduling problems in manufacturing management, routing and transportation, layout design and timetabling problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The large increase of distributed energy resources, including distributed generation, storage systems and demand response, especially in distribution networks, makes the management of the available resources a more complex and crucial process. With wind based generation gaining relevance, in terms of the generation mix, the fact that wind forecasting accuracy rapidly drops with the increase of the forecast anticipation time requires to undertake short-term and very short-term re-scheduling so the final implemented solution enables the lowest possible operation costs. This paper proposes a methodology for energy resource scheduling in smart grids, considering day ahead, hour ahead and five minutes ahead scheduling. The short-term scheduling, undertaken five minutes ahead, takes advantage of the high accuracy of the very-short term wind forecasting providing the user with more efficient scheduling solutions. The proposed method uses a Genetic Algorithm based approach for optimization that is able to cope with the hard execution time constraint of short-term scheduling. Realistic power system simulation, based on PSCAD , is used to validate the obtained solutions. The paper includes a case study with a 33 bus distribution network with high penetration of distributed energy resources implemented in PSCAD .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main purpose of this paper is to propose a Multi-Agent Autonomic and Bio-Inspired based framework with selfmanaging capabilities to solve complex scheduling problems using cooperative negotiation. Scheduling resolution requires the intervention of highly skilled human problem-solvers. This is a very hard and challenging domain because current systems are becoming more and more complex, distributed, interconnected and subject to rapidly changing. A natural Autonomic Computing (AC) evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Technological developments are pulling fieldbus networks to support a new wide class of applications, such as industrial multimedia applications. To enable its use in this kind of applications the TCP/IP suite of protocols can be integrated within a fieldbus stack, leading to a dual-stack approach that is briefly outlined in the paper. One important requirement that must be fulfilled by this approach is that the hard real-time guarantees provided to the control-related traffic ("native" fieldbus traffic) are kept. At the same time it must also provide the desired quality of service (QoS) to IP applications. The focus of the paper is on how, in such a dual-stack approach, QoS can be efficiently provided to IP applications requiring quasi-constant bandwidth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scheduling of constrained deadline sporadic task systems on multiprocessor platforms is an area which has received much attention in the recent past. It is widely believed that finding an optimal scheduler is hard, and therefore most studies have focused on developing algorithms with good processor utilization bounds. These algorithms can be broadly classified into two categories: partitioned scheduling in which tasks are statically assigned to individual processors, and global scheduling in which each task is allowed to execute on any processor in the platform. In this paper we consider a third, more general, approach called cluster-based scheduling. In this approach each task is statically assigned to a processor cluster, tasks in each cluster are globally scheduled among themselves, and clusters in turn are scheduled on the multiprocessor platform. We develop techniques to support such cluster-based scheduling algorithms, and also consider properties that minimize total processor utilization of individual clusters. In the last part of this paper, we develop new virtual cluster-based scheduling algorithms. For implicit deadline sporadic task systems, we develop an optimal scheduling algorithm that is neither Pfair nor ERfair. We also show that the processor utilization bound of us-edf{m/(2m−1)} can be improved by using virtual clustering. Since neither partitioned nor global strategies dominate over the other, cluster-based scheduling is a natural direction for research towards achieving improved processor utilization bounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been widely studied how to schedule real-time tasks on multiprocessor platforms. Several studies find optimal scheduling policies for implicit deadline task systems, but it is hard to understand how each policy utilizes the two important aspects of scheduling real-time tasks on multiprocessors:inter-job concurrency and job urgency. In this paper, we introduce a new scheduling policy that considers these two properties. We prove that the policy is optimal for the special case when the execution time of all tasks are equally one and deadlines are implicit, and observe that the policy is a new concept in that it is not an instance of Pfair or ERfair. It remains open to find a schedulability condition for general task systems under our scheduling policy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiprocessors, particularly in the form of multicores, are becoming standard building blocks for executing reliable software. But their use for applications with hard real-time requirements is non-trivial. Well-known realtime scheduling algorithms in the uniprocessor context (Rate-Monotonic [1] or Earliest-Deadline-First [1]) do not perform well on multiprocessors. For this reason the scientific community in the area of real-time systems has produced new algorithms specifically for multiprocessors. In the meanwhile, a proposal [2] exists for extending the Ada language with new basic constructs which can be used for implementing new algorithms for real-time scheduling; the family of task splitting algorithms is one of them which was emphasized in the proposal [2]. Consequently, assessing whether existing task splitting multiprocessor scheduling algorithms can be implemented with these constructs is paramount. In this paper we present a list of state-of-art task-splitting multiprocessor scheduling algorithms and, for each of them, we present detailed Ada code that uses the new constructs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The resource constrained project scheduling problem (RCPSP) is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. During the last couple of years many heuristic procedures have been developed for this problem, but still these procedures often fail in finding near-optimal solutions. This paper proposes a genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities and delay times of the activities are defined by the genetic algorithm. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

- The resource constrained project scheduling problem (RCPSP) is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. During the last couple of years many heuristic procedures have been developed for this problem, but still these procedures often fail in finding near-optimal solutions. This paper proposes a genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities and delay times of the activities are defined by the genetic algorithm. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm